A foundation for ontology modularisation
by
Zubeida C. Dawood

Submitted to the Department Computer Science
in fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
UNIVERSITY OF CAPE TOWN
November 2017

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

A foundation for ontology modularisation
by
Zubeida C. Dawood

Submitted to the Department Computer Science
on 06 November 2017, in fulfilment of the
requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

There has been great interest in realising the Semantic Web. Ontologies are used to
define Semantic Web applications. Ontologies have grown to be large and complex
to the point where it causes cognitive overload for humans, in understanding and
maintaining, and for machines, in processing and reasoning. Furthermore, building
ontologies from scratch is time-consuming and not always necessary. Prospective on-
tology developers could consider using existing ontologies that are of good quality.
However, an entire large ontology is not always required for a particular application,
but a subset of the knowledge may be relevant. Modularity deals with simplifying
an ontology for a particular context or by structure into smaller ontologies, thereby
preserving the contextual knowledge. There are a number of benefits in modularising
an ontology including simplified maintenance and machine processing, as well as col-
laborative efforts whereby work can be shared among experts. Modularity has been
successfully applied to a number of different ontologies to improve usability and assist
with complexity. However, problems exist for modularity that have not been satis-
factorily addressed. Currently, modularity tools generate large modules that do not
exclusively represent the context. Partitioning tools, which ought to generate disjoint
modules, sometimes create overlapping modules. These problems arise from a num-
ber of issues: different module types have not been clearly characterised, it is unclear
what the properties of a ‘good” module are, and it is unclear which evaluation criteria
applies to specific module types. In order to successfully solve the problem, a number
of theoretical aspects have to be investigated. It is important to determine which
ontology module types are the most widely-used and to characterise each such type
by distinguishing properties. One must identify properties that a ‘good’ or ‘usable’
module meets. In this thesis, we investigate these problems with modularity system-
atically. We begin by identifying dimensions for modularity to define its foundation:
use-case, technique, type, property, and evaluation metric. Each dimension is popu-
lated with sub-dimensions as fine-grained values. The dimensions are used to create
an empirically-based framework for modularity by classifying a set of ontologies with
them, which results in dependencies among the dimensions. The formal framework
can be used to guide the user in modularising an ontology and as a starting point in the
modularisation process. To solve the problem with module quality, new and existing
metrics were implemented into a novel tool TOMM, and an experimental evaluation
with a set of modules was performed resulting in dependencies between the metrics

and module types. These dependencies can be used to determine whether a module
is of good quality. For the issue with existing modularity techniques, we created five
new algorithms to improve the current tools and techniques and experimentally eval-
uate them. The algorithms of the tool, NOMSA, performs as well as other tools for
most performance criteria. For NOMSA’s generated modules, two of its algorithms’
generated modules are good quality when compared to the expected dependencies
of the framework. The remaining three algorithms’ modules correspond to some of
the expected values for the metrics for the ontology set in question. The success of
solving the problems with modularity resulted in a formal foundation for modular-
ity which comprises: an exhaustive set of modularity dimensions with dependencies
between them, a framework for guiding the modularisation process and annotating
module, a way to measure the quality of modules using the novel TOMM tool which
has new and existing evaluation metrics, the SUGOI tool for module management
that has been investigated for module interchangeability, and an implementation of
new algorithms to fill in the gaps of insufficient tools and techniques.

Acknowledgments

First and foremost, I would like to thank the Almighty, for giving me the strength
and wisdom to finish this research.

I would first like to thank my academic supervisor, Dr. Maria Keet. Although
we lived in different cities, I would like to say that the door to her office was always
open whenever I ran into a problem or had a question (no matter how silly) about my
research. I am grateful to Dr. Keet for having the patience of untangling my ideas
and steering me in the right direction, and for opening up many exciting research
opportunities for me.

I would like to thank my co-authors of publications for the successful and inter-
esting collaboration of work: Claudia D’Amoto and Agnieszka Lawrynowicz on the
work on modularising the DMOP ontology for reasoning, Pablo R. Fillottrani and
Karina Cenci on the work on inter-model links within conceptual data models, and
once again, my supervisor Dr. Maria Keet, who assisted me in learning to write and
formulate the work.

Thanks to my friends, Thulani Mashiane and Glenn Masango, for helping me
through the stress with much-needed laughs and snacks, and not letting me give up.
I would like to express gratitude to my husband, Ismail Dawood, for trying to under-
stand my research, helpful criticism from a different point of view, and encouraging
my academic pursuits. Lastly, I want to express my gratitude for my family, who
have been a constant source of support and faith throughout this journey.

Published work

The work included in this thesis is supported by several publications:
Chapter 3

1. Zubeida Casmod Khan and C. Maria Keet. Toward a framework for
ontology modularity. In Proceedings of the Annual Conference of the
South African Institute of Computer Scientists and Information Technolo-
gists (SAICSIT’15). ACM Conference Proceedings, 2015. 28-30 September
2015, Stellenbosch, South Africa

2. Zubeida Casmod Khan and C. Maria Keet. An empirically-based frame-
work for ontology modularisation. Applied Ontology, 10(3-4):171-195, 2015

3. Zubeida Casmod Khan and C. Maria Keet. ROMULUS: the repository of
ontologies for multiple uses populated with mediated foundational ontolo-
gies. Journal of Data Semantics, 5(1):19-36, 2016

4. Zubeida Casmod Khan, C. Maria Keet, Pablo R. Fillottrani, and Karina
Cenci. Experimentally motivated transformations for intermodel links be-
tween conceptual models. In 20th Conference on Advances in Databases
and Information Systems (ADBIS’16), volume 9809 of Lecture Notes in
Computer Science LNCS, pages 104-118. Springer, 2016. August 28-31,
Prague, Czech Republic

Chapter 4

5. C. Maria Keet, Claudia d’Amato, Zubeida Casmod Khan, and Agnieszka
Lawrynowicz. Exploring reasoning with the DMOP ontology. In 3rd Work-
shop on Ontology Reasoner Evaluation (ORE’14), CEUR Workshop Pro-
ceedings, pages 64-70. CEUR-WS.org, 2014. July 1, Vienna, Austria

6. Zubeida Khan and C. Maria Keet. Feasibility of automated foundational
ontology interchangeability. In 19th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW’14), volume 8876
of LNAI, pages 225-237. Springer, 2014. 24 - 28 November 2014, Linkoping,
Sweden

7. Zubeida Casmod Khan and C. Maria Keet. SUGOI: automated ontology
interchangeability. In Patrick Lambrix, Eero Hyvonen, Eva Blomqvist,
Valentina Presutti, Guilin Qi, Uli Sattler, Ying Ding, and Chiara Ghidini,
editors, Knowledge Engineering and Knowledge Management - EKAW 2014
Satellite Events, volume 8982 of Lecture Notes in Computer Science, pages
150-153. Springer, 2014. Linkoping, Sweden, November 24-28, 2014. Re-
vised Selected Papers

8. Zubeida Casmod Khan. Evaluation metrics in ontology modules. In 29th
International Workshop on Description Logics (DL’16), volume 1577 of
CEUR Workshop Proceedings. CEUR-WS.org, 2016. 22-25 April 2016,
Cape Town, South Africa

9.

10.

11.

Zubeida Casmod Khan and C. Maria Keet. Dependencies between modu-
larity metrics towards improved modules. In 20th International Conference
on Knowledge Engineering and Knowledge Management (EKAW’16), Lec-
ture Notes in Artificial Intelligence LNAI, pages 19-23. Springer, 2016.
19-23 November 2016, Bologna, Italy

Zubeida Casmod Khan and C. Maria Keet. Automated ontology inter-
changeability towards improved modules. In Proceedings of the Annual
Conference of the South African Institute of Computer Scientists and In-
formation Technologists (SAICSIT’17). ACM Conference Proceedings, 2017.
26-28 September 2017, Bloemfontein, Free State, South Africa

Zubeida Casmod Khan and C. Maria Keet. Automatic modularisation
with algorithms for abstraction and expressiveness. (in preparation for
submission to an international conference)

Contents

1 Introduction

1.1 Background and motivation o0
1.2 Problem statement L
1.3 Motivationo
1.4 Research objectiveso
1.5 Research methodology
1.6 Organisation of thesis

State of the art

2.1 What isamodule?
2.2 Analysis of existing moduleso

2.2.1 Ontologies as a set of modules

2.2.2 Modules with less detail

2.2.3 Conclusions from the analysis
2.3 Overview of module dimensions
2.4 Properties of modules L
2.5 Use-casesof modules L.
2.6 Techniques of the modularisation process
2.7 Typesof modules
2.8 Evaluation metrics of modules
2.9 Discussion
2.10 Conclusion

Dimensions of modularisation

3.1 Definition
3.2 Use-cases
3.3 Types . . o
3.3.1 Functional modules
3.3.2 Structural modules
3.3.3 Abstraction modules
3.3.4 Expressiveness moduleso
3.4 Properties
3.4.1 Propertiesof amodule L.
3.4.2 Properties of a set of related modules
3.5 Techniques
3.5.1 Graph theory approaches
3.5.2 Statistical approaches
3.5.3 Semantic approaches L.

15
15
21
21
22
23
23

25
25
26
26
27
28
28
29
29
30
32
33
36
37

3.6 Classifying modules: An experimental evaluation 53

3.6.1 Materials and methods 54

3.6.2 Results and Discussion 55

3.7 A framework for ontology modularityo 61
3.7.1 Methodology 61

3.7.2 Dependencies between dimensions 61

3.8 Evaluating the framework 66
3.8.1 Ontology case-studies 66

3.8.2 Conceptual data model case-studies 69

3.9 Discussion 71
3.10 Conclusion L 73

4 Theories and techniques for modularitsation 75
4.1 Issues with modularisation with existing resources 75
4.1.1 Case-study: ROMULUS’s modules 76

4.1.2 Case-study: Modularising the DMOP ontology 78

4.1.3 Problems with existing modularisation resources 79

4.2 Evaluation metrics for modules 80
4.2.1 Structural criteria 81

4.2.2 Logical Criteria 86

4.2.3 Relational criteria L. 88

4.2.4 Information hiding L. 93

4.2.5 Richness criteria o000 94

4.2.6 Tool for ontology module metrics 95

4.2.7 Experimental evaluation 98

4.3 Ontology interchangeability 106
4.3.1 Interchangeability algorithm design 107

4.3.2 SUGOI ontology interchangeability tool 109

4.3.3 Interchangeability with modular ontologies 112

4.3.4 Experimental Evaluation 118

4.4 Ontology modularisation techniques 122
4.4.1 New modularisation algorithms 123

4.4.2 Ilustration of the algorithms 129

4.4.3 NOMSA Modularisation tool 132

4.4.4 Experimental evaluation 133

4.5 Discussion 137
4.6 Conclusion 138

5 Conclusion and future research 140
5.1 Conclusion 140
5.2 Futureresearch 145

A Classification of the set of modules 147
B The Burger Ontology 156

10

List of Figures

1.1

1.2

1.3

2.1

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

4.1

4.2
4.3

4.4
4.5
4.6
4.7

Difficulty using the BioPortal visualisation tool for the large NCI can-
cerontology.
Relations between entities which cause difficulty in creating compact
modules.
The flow of activities to be performed for the research, the dotted
arrows represent backward flows, i.e., returning to a previous activity.

The traversal approach in module extraction for a restaurant ontology.

Overlapping modules in an ontology system.
Mutually exclusive modules in an ontology system.
Union equivalence occurs for modules A, B, and C; the union of them
is equivalent to ontology O. oL
The frequency of each use-case for the set of 189 modules.
The frequency of each type for the set of 189 module.
The frequency of each technique for the set of 189 modules.
The frequency of each property among modules.
A high-level view of the framework for modularity.
The dependencies between use-cases and module types.
The dependencies between module types and technique.
The dependencies between techniques and properties.
The dependencies between the module dimensions for QUDT modules.
A cognitive overload scenario: a conceptual data model on the gover-
nance domain with intermodel assertions between modules.

An integration scenario: The intermodel assertions between Flights
models in EER and UML. 00000

The metadata pertaining to module details from the DOLCE-Endurants
module in ROMULUS.
An ontology’s atomic decomposition.
A source ontology and corresponding module for which we calculate
intra-module distance.o

Two sets of modules S1, S2 with inter-related links.
The interface of TOMM.

A log file for the kisao-partition ontology module generated by TOMM.

The set of metrics that can be measured for each module type.

11

17

19

24
30

47
48

48
26
o8
29
60
62
63
64
65
67

70

71

78
83

84
89
97
97

103

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1
5.2

The terminologies used for the files involved in interchangeability using
the SAO ontology.
The interface of the online desktop version of SUGOI.
The interface of the online desktop version of SUGOI-Gen.
Examples of interchanging the dmop:DataType and dmop:Strategy do-
main entities from *M; DOLCE to { M; GFO with SUGOI, using equiv-
alence and subsumption mappings. Source: [81]
The position of the sao:Membrane Surface class in source and target
ontologies. Source: [84].o
The mapping file showing alignments for classes between DOLCE and
BFO foundational ontologies.
Generating a high-level abstraction module with depth = 2 from the
GFO ontology.
The burger ontology to which the algorithms are applied; see text for
details.
The interface of NOMSA.

The set of metrics that can be measured for each module type.
A high-level view of the framework for modularity.

12

108
111
112
113

114

List of Tables

2.1

3.1
3.2

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9
4.10

4.11
4.12
4.13
4.14

4.15
4.16
4.17
4.18

Al

A summary of the current techniques of modularisation 33
The modularisation techniques implemented by each tool. 53
Classifying the conceptual data model projects using the framework
for modularity. 72
Size metrics for DMOP and its related modules. 80
The farness values for each entity of the source ontology and corre-
sponding module. o o 85
The farness and strength of relation (1/farness) values for each entity
of the ontology. 86
The number of modules, NM, that have to be considered to relate two
entities in the set of modules (S1).. 90
The number of modules, NM, that have to be considered to relate two
entities in the set of modules (S2).. 90
The number of external links, NEL, that have to be considered to relate
M1 to other modules in the system. 91
A summary of the set of evaluation metrics with their expected value
range and values that are considered good. 96
Averages for the structural metrics of the set of modules. 99
Medians for the structural metrics of the set of modules. 100
Average, median, and boolean values for the logical, richness, informa-
tion hiding, and relational criteria. 101

The metrics for the QUDT ontology modules generated by TOMM . 104
The metrics for the Pescado disease ontology generated by TOMM . . 105
The metrics for the Symptom skin ontology module generated by TOMM.105
A comparison of the *0,,, and ‘O,, for the interchangeability and rea-

SONING .« . v v v v v e e 120
The metrics for the *O,, and 'O,, ontologies. 121
The classes of the burger ontology with the number of referencing axioms. 130
A comparison of three features of modularisation tools against NOMSA 134
The average values for the metadata for all the generated modules . . 136

The classification of the set of modules for the use-case, type, property,
and technique dimensions. L. 147

13

14

Chapter 1

Introduction

The vision of the Semantic Web is to allow for machines to process web content
meaningfully thereby improving the general web experience for users. Ontologies
are used as resources for Semantic Web applications because they describe a specific
domain such that machines are able to identify, classify and understand the domain
thereby improving the web experience for an average user as one usage scenario of
ontologies.

In the early 1990s, Gruber [55] defined an ontology, in the context of computer sci-
ence, as a formal specification of a conceptualisation. However, this is not completely
accurate because of the intended meaning of the word ‘conceptualisation’, which refers
to a particular state of affairs in the world. Therefore, Guarino [56] has redefined an
ontology as “a logical theory accounting for the intended meaning of a formal vocab-
ulary, i.e. its ontological commitment to a particular conceptualisation of the world.
The intended models of a logical language using such a vocabulary are constrained by
its ontological commitment. An ontology indirectly reflects this commitment (and the
underlying conceptualization) by approximating these intended models.”

Since then, ontologies have been widely applied to various subject domains and
applications. Ontologies are commonly used for natural language processing, to re-
alise the goals of the Semantic Web, data integration, ontology-based data access etc.
Towards the goal of realising the Semantic Web, ontologies facilitate heterogeneous in-
teroperability. Ontologies that describe large, well-defined domains are consequently
large and complex in nature. Examples of such enormous ontologies (those that
contain > 100 000 entities) include the BioModels ontology [64], the SNOMED CT
ontology [129] and the FMA ontology [133]. These ontologies contain hundreds of
thousands of terms.

1.1 Background and motivation

Ontologies are important in the Semantic Web for a number of reasons. They can
be used to facilitate common understanding of a domain across many heterogeneous
systems and people. For instance, suppose food blogs are built upon a common
underlying ontology, then applications can easily extract information from them which

15

can be automatically used in related websites or blogs such as recipe blogs. The
rigorous axiomatisations allowed in an ontology enable it to assist with classifications.
In domains such as medicine, a patient’s symptoms can easily be stored in an ontology,
and by reasoning one can predict health conditions and possible diseases. One of the
primary reasons for using ontologies is that parts or modules of other ontologies can
be easily imported or used in an ontology without the need for redesigning everything
from scratch. One example of this is the use of foundational ontologies for representing
higher-level concepts such as processes and events in a domain ontology. Search
engines such as Google implement light-weight ontologies in order to improve search
results and gain relevant results for a query. For instance, there is the schema.org
vocabulary! that contains entities and relationships of various domains that are used
to mark-up many web pages. There is an enormous amount of information online
and ambiguity among the information. The implemented ontology reduces ambiguity,
narrows down a search and returns what is required for a particular search query.
We now illustrate the importance of ontologies with a motivating example.

Example 1 Consider that a bio-medicine website contains textual knowledge describ-
ing the Ebola disease, and it states that Ebola has a symptom of coughing and, Ebola is
caused by a Virus. How would other web tools, without human intervention, recognise
the fact that this web page describes the Fbola disease symptoms and causes, and not
interpret in incorrectly as say, a computer virus? For instance, it could be that a
hospital web application may want to automatically integrate this information on the
Ebola disease. An ontology could be used to describe the knowledge such that semantic
interoperability is achieved. This can be done as follows.

The knowledge is described within an ontology using the Web Ontology Language
(OWL). OWL is serialised in the Resource Description Framework/ eXtensible Mark-
up Language (RDF/XML). RDF provides a graph-like infrastructure for describing
this knowledge by using triples. Triples consist of a subject, predicate and object. For
describing the knowledge on FEbola, Ebola would be the subject, causedBy would be the
predicate, and Virus would be the object. RDFS (RDF Schema) then adds semantics to
these triples thereby allowing for a high level of expressivity in the ontology. One could
state that Ebola, Virus and, Cough are classes and that causedBy and hasSymptom are
object properties. With OWL, cardinality constraints could be added to the data to
specify that Ebola has at least 3 symptoms. Using OWL, one could also state that
the Ebola entity on the bio-medicine website is the same as the one on the hospital
website thus integrating the data from the bio-medicine website to the hospital web
application as required.

Since ontologies have grown to be extremely large and complex, this brings about
great difficulty for both machines and humans. For demonstrating the difficulties
faced by machines, we have tried two different ontology processing tools using the
large NCI cancer ontology [54]. First, the BioPortal visualisation tool [163] takes
several minutes to load large taxonomy branches of an ontology (see Figure 1.1)
using a machine with an Intel Core 2 Duo Processor with 4GB of RAM. Next, we

'http://schema.org/ last accessed: 20 June 2017.

16

used the OWL metrics tool? to compute its metrics. It took 12 minutes to process
before it returned an ontology parsing error.

. BioPortal Browse Search Mappings Recommender Annotator Resource Index Projects

National Cancer Institute Thesaurus

Summary Classes Motes Mappings Widgets
Details Hotes (0) Class Mappings (6)

Jump To:

H- Abnormal Cell

© Activity

* Anatomic Structure, System, or Substance

* Biochemical Pathway

* Biological Process

* Chemotherapy Regimen or Agent Combination
Conceptual Entity

+ Diagnostic or Prognostic Factor

- Disease, Disorder or Finding

- Drug, Food, Chemical or Biomedical Material
" Experimental Organism Anatomical Concept
" Experimental Organism Diagnosis

Gene

* Gene Product

* Manufactured Object

* Molecular Abnormality

+ NCI Administrative Concept

 Crganism

" Property or Attribute

- Retired Concept

There are 316 concepts to load. Retrieving these concepts may
take several minutes, and things may appear to be frozen. Shall
we load only 20 concepts?

Load all 316 concepts | | Load only 20 concepts

Ei-E BB BB BB BB

Figure 1.1: Difficulty using the BioPortal visualisation tool for the large NCI cancer
ontology.

For humans, ontologies are confusing and not easily understood and maintained
by developers and users, and as such, hinder ontology development, usage, reuse
and collaborative efforts. On the other hand, due to the excessive data within the
ontologies, and having large ontologies in expressive languages, reasoners and tools
perform slowly and sometimes malfunction. At times, building an ontology from
scratch is not necessary if the domain is well-designed in an existing ontology. While
it is important to represent every building block of a domain in an ontology, developers
and users sometimes require only specific subsets of an ontology for a particular use-
case.

Over the last few years, there has been a growth in using modularity to assist
with problems in different domains. The general concept of modularity refers to
dividing and separating the components of a large system such that modules can be
recombined. This concept is present in the biological field, whereby it refers to the fact
that organisms contain modules, in mathematics whereby a module is a generalisation
of the idea of vector space over a field, and in the cognitive science field, whereby
scientists argue whether the mind is composed of modules that are independent of
each other and focus on different sub-domains of the mind, to name a few. Closer
to the current area of research, modularity has been applied in computer science,

’http://mowl-power.cs.man.ac.uk:8080/metrics/ last accessed: 20 June 2017

17

particularly in software design and development to allow collaborative work between
programmers and promote code reuse. Seeing that modularity has been applied to
numerous and heterogeneous fields of study, it is no surprise that ontology developers
have considered modularity to aid with large and complex ontologies.

Modularity is used to simplify and downsize an ontology for the task at hand; to
modularise a large ontology into smaller manageable ontologies. In terms of ontology
modularity, it is defined informally as the possibility to perceive a large knowledge
repository as a set of smaller repositories or modules that together compose the entire
repository [123]. It is required in ontology development and usage when one needs
to hide or remove knowledge that is not required for the use-case. Modularity has
been successfully applied to a number of different ontologies to improve usability and
assist with complexity. Examples include the myExperiment ontology [111], which is
a collaborative environment where scientists publish and share their work-flows and
experiment plans among groups, the Semantic Sensor Net ontology where there are
various modules to describe sensors and observations [71], and BioTop ontologies for
life sciences in which the principle of modularisation have been applied [140]. There
are many different types of ontology modules, such as language expressivity modules,
domain-specific modules, more/less-detailed modules, to name a few.

In recent years, there has been a proliferation of numerous methods and tools such
as Swoop [73], Protégé [110] and OWL module extractor tool [30] which aid in mod-
ularity engineering tasks. However, previous work [80] has shown that the modules
generated by these tools are biased toward overlapping modules, which results in large
ontology modules due to the tight cohesion, or the extent to which entities are related
to each other, and underlying logic of ontologies. Overlapping modules are those that
share common knowledge. In some cases, smaller disjoint modules are required. An
evaluation of these tools indicate that in most cases, the sizes of the resulting modules
are quite large and in some cases almost the same as the original ontology [35], hence
they are not effective for the intended task. For instance, we tried to modularise the
Data Mining OPtimization (DMOP) ontology [75] with several modularisation tools,
but all modules were too large to use [78], and extracting content on object properties
from DOLCE with the ‘copy’ feature, their asserted characteristics such as transitiv-
ity were not extracted [79]. Most modularisation algorithms are designed to identify
relatively separated or isolated parts of an ontology. Therefore, when there are many
class expressions and relations in ontology, few classes are isolated, resulting in large
modules. This is illustrated in Fig. 1.2, where in the Nature reserve ontology, the
Giraffe and Acacia-leaf entities exist and are linked by relations. Let us assume that
we wish to use one of the existing tools such as the OWL module extractor [30] to
extract a module. The underlying logic of existing ontology modularity tools is aimed
at preserving the completeness of the ontology. Local completeness of a module states
that every axiom that contains elements of a module local signature M in an ontology
O, must be preserved in the module. In this case, if one were to extract a module
about Flora, a difficulty arises because of the eats and eaten-by relations that occur
between the Giraffe and Acacia-leaf entities. As such, when modularising an ontology
of Flora, the tools preserve the Giraffe entity in the resulting module because the Flora
entity has relations and axioms that involve the Giraffe entity. This modularisation

18

Nature Reserve

T

Flora Fauna

Plant Plant-part Herbivore Carnivore Omnivore

1

Root Leaf Giraffe Cow
T T eats
Acacia-leaf eaten-by

Figure 1.2: Relations between entities which cause difficulty in creating compact
modules.

results in modules that are too large with some knowledge that is irrelevant for the
domain.

Another issue concerning ontology modules is the lack of evaluation metrics. The
few existing works on evaluation metrics focus on only some metrics that suit the
modularisation technique [124, 137, 164], and there is not always a quantitative ap-
proach to calculate them. Overall, the metrics are not comprehensive enough to apply
to a variety of modules, and it is unclear which metrics fare well with particular types
of ontology modules. This has made it difficult to determine whether a module is a
good module; it is unclear which metrics should be considered.

We illustrate the issues concerning modularity with the following example.

Example 2 Consider a case where an ontology engineer wishes to develop an enter-
prise web application for an exciting book store. In order to compete with ezisting
exciting interactive web utilities such as Pottermore which engages and challenges
Harry Potter fans®, a simple website is not enough. The developer needs to create
an interactive experience aimed at book fandoms®. Furthermore, the book store appli-
cation must be machine readable in order to realise the vision of the Semantic Web.
Rather than unnecessarily starting from scratch, the ontology developer decides to
reuse existing resources from the web.

3https://www.pottermore.com/ last accessed: 20 June 2017.
4A fandom is a term used to describe fans who share a common interest such as the Harry Potter
community, the Pokémon community, the Doctor Who community, and so on.

19

She has found the following existing resources: a general book ontology contain-
ing metadata about books such as authors, edition, etc., a Japanese anime ontology,
containing a large amount of data about anime such as genre, protagonists, man-
gaka, etc., a toy ontology which contains toy product details, and a gazetteer ontology
describing different places of geographical interest.

For the Japanese anime ontology, she wishes only to use parts of the ontology
that contains information about anime that have originated from manga and novels.
The tazonomy of the anime ontology is large, complicated, and too difficult for the
developer to manually traverse through the entire ontology and understand it. For
the toy ontology, there are two main branches, a Toy entity with subclasses such as
Book-toy, Game-toy, Movie-toy etc. , and a Toy-property entity containing knowledge
about the properties of a toy, e.g., height, weight, colour, etc. The developer wishes
to extract only the specific Book-toy entity and the generalised Toy-property entity.
She wishes to use the gazetteer ontology to describe both fictional and real places
that appear in books. The gazetteer ontology has a high level of detail and contains
knowledge about the population of each city, neighbouring countries, the size of the
country, etc. However, the developer does not require the high-level of detail of the
ontology, but rather a simplified version.

The developer decides that the manga and novel aspects of the anime ontology
could be imported into the general book ontology. The toy ontology, however, should
be separate from the book ontology, to allow toy specialists to update it separately. The
gazetteer ontology should also be a separate module. By creating separate modules,
the developer hopes to promote collaborative ontology development within a team and
ease the validity and maintenance of the system. While the toy and gazetteer ontology
are separate modules, they are also related to the book ontology, i.e., there should be
axioms that link the modules. For instance, for the toy ontology, it could be that a
scaled figure of Katniss Fverdeen is based on the character, Katniss Everdeen, from
the Hunger games trilogy book series. For the geographical ontology, it could be that
Alicante is the city that exists in the Mortal Instruments book series.

This example opens up a number of questions for the developer. How should the
developer extract reading material aspects from the anime ontology without travers-
ing through the entire ontology? How should the developer isolate the Book-toy and
Toy-property entities from the toy ontology? How should the developer simplify the ge-
ographical ontology? It is true that there are existing ontology modularity techniques.
Howewver, which technique, if any, will be able to perform the aforementioned tasks.
It 1s clear that the processes of extracting reading material aspects, isolating branches
of interest, and tazonomy simplification are all different. Once the developer creates
these modules, how should she measure the quality of these modules, considering that
these modules have different properties? There are a number of existing modularity
evaluation criteria. Again, it is unclear which metric should be used for these differing
modules.

How should the developer ensure that there are separate modules for the differ-
ent aspects of the application, but communication still exists between the modules?
Communication between the different modules implies that there may be overlapping
or shared knowledge among the interrelated modules. How should the developer en-

20

sure that consistency is ensured among the modules, and provide support for module
management and maintenance?

1.2 Problem statement

The problem of modularity, in terms of module extraction for satisfying different
purposes of modularity such as disjoint modules, modules of context, modules of
greater/less details, and in terms of the quality of the generated modules in terms
of size and intra-module distance, has not been satisfactorily addressed. There is
currently no foundation for modularity, i.e., a user has no guidance on how to initiate
modularisation for a large ontology, which type of module to extract, which tool to
use, and how to determine if the module is of good quality.

While a number of tools and methods have been developed to assist the user
with ontology modularity, it is still unclear which tool is appropriate for a user’s
modularity task. Users face great difficulty in selecting an appropriate tool to use for
modularisation, for the tools differ with regard to techniques and purposes and it is
not clear what the appropriate modularity technique is for a purpose. Also, existing
techniques are not sufficient in creating compact modules [35, 80]. The evaluation
of modularisation techniques reveals that some tools fail to partition large ontologies
because they focus on preserving the logical properties of the modules while others
lose some of the relational properties of the ontologies, and that most tools generate
views instead of module file outputs [116, 117].

Lastly, it is unclear how to determine whether a module is a good or bad mod-
ule due to the lack of evaluation metrics. While some research has been done on
modularity evaluation metrics, it is restrictive and focuses mainly on limited metrics
such as size and local completeness. This is not comprehensive enough to apply to
different types of modules. Pathak et. al [124] found that, for the criteria that do
exist to evaluate modules, certain tools do not satisfy certain criteria. For instance,
graph-based tools fail to achieve local completeness of the module.

Based on these unanswered questions, it is clear that the ontology developer faces
great difficulty in ontology reuse. These unanswered questions pertain to ontology
modularity choices. Currently, there is no theoretical foundation for ontology mod-
ularity. Selecting ontology modularity techniques for the different aspects of the
enterprise bookstore application is a difficult task because there are different assump-
tions for each aspect, and there are multiple modularisation approaches. It is unclear
which approach should be used for each specific assumption.

1.3 Motivation

Since there are various types of ontology modules, and also a number of modularity
techniques, it is unclear on how to generate modules tailored for a particular scenario.
A formal foundation for modularity, if exhaustive and clearly defined, would be of
great use in solving the problems summarised in Section 1.2.

21

A multi-dimensional module engineering foundation will aid the ontology devel-
oper with ontology modularisation. When such a foundation is implemented, it could
assist the user to create useful modules based on a specific application.

In order to solve the problem concerning insufficient modularisation evaluation
metrics, the module foundation can include metrics as a dimension to be populated
with a variety of metrics to assist with the different types of modules. This will assist
the user to determine whether a module is good or bad quality.

1.4 Research objectives

To solve this problem of creating useful and better quality modules, we will look at
existing techniques in ontology modularisation, with the aim of devising a foundation
for modularity. In order to achieve this, it is necessary to, firstly, study and evalu-
ate existing approaches in modularity evaluation criteria introduced elsewhere [35].
We will then identify relevant dimensions towards creating a modularity foundation.
There is one main research question with a number of sub-questions which we wish
to address.

1. How can one devise a formal foundation for modularity to improve existing
modularity techniques and results? This can be further broken down into sub-
questions.

What are the different types of modules that exist?
What are the properties with which we can characterise each module type?
What are the different purposes behind module creation?

Which techniques have been proposed perform different types of modular-
isation?

(e) How can existing techniques for modularity be improved?
(f) What are the criteria for ‘good’ or ‘usable’ ontology modules to meet?

(g) Is there a way to link the above answers in order to guide the modularity
process?

The questions, if answered correctly, should guide the user on how to modularise a
particular ontology in the best way according to its properties.Based on these research
questions, several tasks are to be performed which are:

e Identify dimensions associated with ontology modules.
e (Create a formal foundation for ontology modularity.
e Perform an evaluation of the formal foundation for ontology modularity.

e Create a tool to calculate ontology evaluation metrics for modules.

22

Perform an evaluation of the metrics.

Design and improve on algorithms to create ontology modules of different types.

Create tool support for the new algorithms.

Perform an evaluation of the modularisation algorithms.

1.5 Research methodology

We aim to create a foundation to firstly assist the user in creating useful modules
depending on the application, secondly to create algorithms, supported by implemen-
tations and evaluations, for automating modularisation for different techniques, and
lastly to assist in evaluating various types of ontology modules with new and exist-
ing metrics that have been experimentally evaluated. The tasks to be performed to
achieve the goal of creating and managing modules are outlined in Figure 1.3.

1.6 Organisation of thesis

Following this introductory Chapter, the remainder of the thesis is organised as fol-
lows. In Chapter 2, we provide a state of the art into modularity. This Chapter
encompasses an analysis of existing modules and literature on formal definitions for
modularity, properties, use-cases, techniques, types, and metrics of the modularisa-
tion process. The dimensions for modularity were identified from the literature of
this Chapter. We have a discussion section and conclude the Chapter.

Chapter 3 focuses on the dimensions for modularisation that were identified in
Chapter 2. The Chapter starts with first providing our own definition for modularity
to resolve the shortcomings of previous definitions. Thereafter, four dimensions for
modularity are defined: use-case, technique, types, and properties. Each dimension
is then populated with illustrative examples. Thereafter, we present an empirically-
based framework for ontology modularity, aimed at guiding the modularisation pro-
cess. This follows with a section on classifying ontology modules in an experiment.
Thereafter we present the framework for modularity aimed at guiding the modu-
larisation process. An evaluation of the framework with ontology use-cases follows.
Thereafter we have a discussion and conclude the Chapter.

Chapter 4 deals with new theories and techniques for modularity. The Chapter
begins with an experiment to gain insight into the current state of the art concern-
ing modularisation. Thereafter we investigate the evaluation of module metrics and
introduce the Tool for Ontology Module Metrics (TOMM) which is aimed at gen-
erating evaluation metrics for modules. TOMM is evaluated experimentally which
reveals some dependencies between metrics for modules and other dimensions of the
framework. This follows with an investigation on module interchangeability, and we
introduce Software Used for Gaining Ontology Interchangeability (SUGOI) which is
a tool to swap modules. We perform an experiment using a set of modules for SUGOI

23

1. Exploration phase 2. Framework phase
Start| (a) Literature Review [(_.--F - - (c) Identify (d) Define and
(Chapter 2) dimensions > populate
. (Chapter 2) dimensions
' (Chapter 3)
y mmmemeen- -+ v I
(b) Formulate : (e) Dependencies
problems and ' among () Evaluatg
research questions E dimensions for > framework with
(Chapter 1) : framework Hse-cases
E (Chapter 3) (Chapter 3)
: |
3. Theories and techniques pr'iééé """"""" End
(g) Investigate module (j) Investigate module (m) Investigate
interchangeability by quality modularisation
updating algorithm (k) Create module techniques
(h) Create tool for evaluation tool: TOMM (n) Create a tool for
— interchangeability: SUGOI M () Experimental M modularisation: NOMSA
(i) Experimental evaluation evaluation for module (o) Experimental
for interchangeability quality evaluation for techniques
(Chapter 4) (Chapter 4) (Chapter 4)

Figure 1.3: The flow of activities to be performed for the research, the dotted arrows
represent backward flows, i.e., returning to a previous activity.

to determine whether interchanging modules has an effect on the modules’ metrics.
We then present five new algorithms for modularisation, an illustration of these al-
gorithms using a toy Burger ontology, and a tool implementation of the algorithms:
Novel Ontology Modularisation SoftwAre (NOMSA). An experimental evaluation of
NOMSA and a comparison of NOMSA to other modularisation tools follows. The
experiment reveals information about the features of NOMSA and the quality of
NOMSA’s generated modules. We then have a discussion and conclude the Chapter.

In Chapter 5, we summarise our contributions by answering the research questions
proposed, discuss avenues for future research, and conclude the thesis.

Finally, there are two appendices. Appendix A is where we provide the classifica-
tion for each module according to its dimensions from the experimental evaluation in
Section 3.6. Appendix B lists the complete Burger ontology from the illustration of
the algorithms of Section 4.4.2.

24

Chapter 2

State of the art

The aim of this chapter is to provide the state of the art concerning modularity in
the various disciplines, and discuss current limitations of modularity, hence, to pro-
vide direction on the gaps that need to be filled, such as what is lacking in existing
techniques and evaluation metrics and to identify components for a foundation for
modularity. To begin, we analyse the current definitions for modularity in Section 2.1.
We follow with an analysis of existing modules with the aim of identifying dimensions
of modularity in Section 2.2. In Section 2.3 we give an overview of all the dimensions
for modularity. Thereafter, we have sections 2.4- 2.8 on the literature on each dimen-
sion of modularity: properties, use-cases, techniques, types, and metrics. We follow
with a discussion in Section 2.9 and conclude in Section 2.10.

2.1 What is a module?

In line with achieving our goal of creating a foundation for modularity, it is necessary
to provide a clear definition of a module and to summarise the state of the art with
regard to advances in modularisation. In this section, we describe and discuss existing
definitions for modularisation to select a definition to use for our research.

Definition 1 (Modularisation) Parent and Spaccapietra [123]: In its most generic
meaning, it denotes the possibility to perceive a large knowledge repository (be it an
ontology or a database) as a set of modules, i.e. smaller repositories that, in some
way, are parts of and compose the whole thing.

In definition 1, modularisation is defined at a generic level, as a way of interpreting
a large domain as smaller parts such that the parts constitute the whole domain.
However, in some cases, modules are parts but are not contained in a set that compose
whole things. This is the case for the BioTopLite [140], and GFO-basic [61] ontology
modules which are modules containing some of the domain knowledge, without being
part of a set of that constitutes the whole domain.

Definition 2 (Ontology module) Doran et al. [37]: An ontology module is a reusable
component of a larger or more complex ontology, which is self-contained but bears a
definite association to other ontology modules, including the original ontology.

25

Definition 3 (Ontology module) d’Aquin et al. [3]]: We define an ontology module
in a very general way as a part of an ontology: a module M;(O) of an ontology O is
a set of axioms, such that Sig(M;(0)) C Sig(O).

Definition 4 (Modules) Del Vescovo et al. [158]: Modules are suitably small subsets
of an ontology O that behave for specific purposes like the original ontology over a
given signature Y, i.e., a set of terms (classes and properties).

Definitions 2, 3, 4 make mention of a module having an association to an original
ontology. However, not all modules have an original ontology. The myExperiment
ontology [111], is a decomposition of the domain into structural modules at the onset
of ontology development hence there is no source ontology.

Definition 5 (Module) Tsarkov [154]: A module is a subset of an ontology that
captures all the knowledge the ontology contains about a given set of terms.

In definition 5, modules are restricted to those that capture all the knowledge of
the ontology concerning some given terms. This type of module definition is far too
strict to hold for all types of modules that exist and is focussed on modules with the
condition of logical completeness. For instance, partitioning tools do not guarantee
that all the knowledge concerning some given terms is preserved in each partition;
local completeness does not hold [124].

While existing literature does provide some definitions, we note that no definition
is universally accepted. It seems the case that the existing definitions are unique to the
problem at hand. The above module definitions hold for their respective application
areas, but there are some gaps in the existing modularity definitions.

2.2 Analysis of existing modules

In this section, we describe some modules that exist. To do this, we use content
analysis as a research method. This involves studying the body of work on modules
to identify common components or patterns. We examine 13 different modularisation
applications and analyse them according to what they achieve, their purpose, how
they are created, and any properties that are apparent. This analysis aids in uncov-
ering various dimensions of a module towards devising a foundation for modularity.

2.2.1 Ontologies as a set of modules

In this section, we describe cases where a large ontology is sub-divided into a set of
several modules. We have selected various sets of ontology modules from existing
literature and repositories. The LKIF legal ontology [67] is divided into a set of
15 functional modules (modules having different functions), which describe concepts
from the legal and foundational domains. It is a set of modules that have been
created at the onset of ontology development to describe the domain rather than
a single large ontology. The OntoDM ontology [121] is an ontology of data mining

26

and is modular in structure. It is composed of three different functional aspects of
the data mining domain, created at the onset of ontology development as well. The
Geopolitical ontology has been designed to facilitate data exchange among systems
managing information about different countries; it has been modularised according
to different types of territories. A number of ontologies including Koala, Galen,
Mereology, miniTambis. OWL-S, People, and Tambis were partitioned using atomic
decomposition, in a study of the modular structure of ontologies by decomposition
[159].

The PESCaDO ontology[162] is an environmental ontology that has been divided
into 10 modules upfront. Each module covers a different aspect of the subject domain
such as exceedances, data, geospatial information, etc. The OntoSpace project [11] is
aimed at developing ontology-based methods suitable for supporting spatially-aware
systems. There are a number of spatial modules used to cover different functions in
the system. The Modular Unified Tagging Ontology (MUTO) [99] is an ontology for
tagging and folksonomies. It has been designed so that different parts of the ontology
are conceptually separate to allow for easy extensibility. Modules can be added to the
ontology to describe specific sub-domains or tagging and folksonomies. Gist [103] is
a foundational ontology designed to use for the business domain. The latest version,
Gist 7.0, is modular in design and is made up of 18 modules that have been created
at the onset. For the sets of modules we have analysed, they have been created
as a modular ontology upfront, at the onset of ontology development, or they have
been created by taking an existing large ontology and applying some modularisation
techniques to create a set of modules.

2.2.2 Modules with less detail

In this section we describe cases where an ontology is modularised by removing some
detail from the original ontology. We have selected various ontology modules from
existing literature and repositories. BioTop [144], a top-domain level ontology, has
been modularised into modules that include foundational ontologies, a less detailed
module and a module for the chemistry subject domain. There are two modules of the
GFO foundational ontology [61]. First, there is a lighter version with fewer theoretical
concepts, GFO-Basic. Second, GFO [61] has been updated with a core biological
ontology, GFO-Bio [65]. DOLCE [102] has a number of modular extensions that add
domain-independent content to the ontology such as temporal and spatial relations.
ROMULUS [80], a repository for foundational ontology usage and interoperability
uses foundational ontology modules for DOLCE, BFO and GFO. In addition to these
existing modules (GFO-Basic, TemporalRelations, etc.), new modules were created,
such as OWL profile modules, and branch modules which cover knowledge about
specific entities in the ontologies. The ROMULUS modules were created manually
since using tools resulted in unsuitable modules; the sizes of the modules were too
large [88].

The ChEBI ontology is an ontology of chemical entities in the biological domain.
ChEBI has been updated with modular extensions for the purpose of maintenance
and validation [60]. There are two extensions, a mapping to the BFO foundational

27

ontology, and a disjointness module that includes disjointness axioms about entities
in ChEBI to assist with validating the ChEBI ontology with error detection. Most
classes in the original ChEBI ontology are not disjoint, which could cause classification
errors and omissions therefore a disjointness module helps with this. The Dumontier
Lab for Biomedical Knowledge Discovery! hosts a range of biomedical domain on-
tologies. Each of their ontologies is separated into non-disjoint primitive taxonomies,
and complex class expressions for DL reasoning. The primitive taxonomies are less-
expressive modules as they do not contain the expressiveness afforded by the OWL-DL
language, such as disjunction, negation etc., and can be expressed in simpler OWL
profiles.

2.2.3 Conclusions from the analysis

By analysing the existing modules from Section 2.2.1- 2.2.2 with a content analysis,
we have identified a few terms that have been used when describing modules. Firstly,
there is the notion of ‘use-case’: why was the module created? Some of the mod-
ules described here were created for maintenance and validation. Then some of the
modules were described as functional, taxonomies, etc. indicating that there may be
different ‘types’ of modules. Next, there is mention of how the module is created or
its ‘technique’, whether it was done manually or using an automatic approach such
as partitioning. Another aspect is where modules are described as being part of a set
of modules, being stand-alone, or having some extensions or refinements. These are
some of the ‘properties’ that modules may exhibit. Lastly, there is some mention of
the size of the resulting modules. Size is considered an ‘evaluation metric’. The iden-
tification of these terms as dimensions of modules brings us a step closer to realising
the goal of creating a foundation for modularity.

2.3 Overview of module dimensions

In order to define modularity and create a uniform method for creating and using on-
tology modules, we identify five dimensions that have an impact on ontology modules.
The dimensions each have criteria, and we will demonstrate that approaching ontol-
ogy modularity using different sets of criteria will result in different interpretations
of modules.

1. Use-cases: There are reasons for modularity; thus our first dimension is Use-
cases. A use-case could be that the module is created to assist with reasoning.

2. Properties: By studying existing ontology modules, we can identify properties
that modules exhibit, e.g., some modules are disjoint from one another, while
others have shared knowledge and are overlapping.

3. Types: There are types of modules. A module could be an OWL profile
module, or a small branch of information.

'http://dumontierlab.com/?page=ontologies last accessed: 20 June 2017.

28

4. Techniques: In order to perform modularisation on a system, there are many
methods which we refer to as techniques. A modularity technique could be
inspired by graph theory, or a logical approach that is based on principles such
as logical correctness.

5. Evaluation metrics: In order to assess the quality of an ontology module, we
need an evaluation dimension. Dimensions such as encapsulation and size are
commonly used to assess modules.

In the next section, we review the body of literature for each of these dimensions.

2.4 Properties of modules

Parent and Spaccapietra [123], define strategies that govern the way an ontology is
modularised. These strategies include: disjoint or overlapping modules, semantics-
driven strategies that involve allowing experts to create modules that ‘make sense’ and
structure-driven strategies whereby ontologies are decomposed based on structural
properties.

Other research has been performed on exploring semantic notions of modularisa-
tion [91, 92]. These studies are logic-based with a main focus on module insepara-
bility, i.e., when two ontologies (the module, and the source ontology) are deemed
to be inseparable if they give the same answers to any query. Wang et. al [161]
look at the Food and Agriculture Organisation (FAQO) information systems as a case
study to improve it using modularity. They propose four requirements for the mod-
ular ontologies: encapsulation, re-usability, trust, and security. Stuckenchmidt and
Klein bring propose three properties for a modular ontology to fulfil: loose coupling,
self-containment, and integrity [148]. For loose coupling, the modular system should
prevent unwanted interactions among the modules. The modules have to be self-
contained to facilitate re-use of individual modules. For integrity, the modules have
to have mechanisms to check whether knowledge across the system has changed to
preserve the correctness of the reasoning. The existing work on properties for module
also include some overlap on evaluation metrics for modules. For instance, properties
such as ‘loose coupling’, and ‘encapsulation” mentioned in this section could be used
to evaluate a module.

2.5 Use-cases of modules

In this Section, we group together the goals, reasons, and purposes that have been
discussed for modularisation as use-cases.

Parent and Spaccapietra [123] define several goals of modularity. These goals
include scalability for reasoning and maintenance, complexity management, under-
standability and reuse. Stuckenchmidt and Klein’s work [148] focuses on modulari-
sation with respect to local containment of terminological reasoning. For this, they
describe three reasons for using modularity: to have distributed systems, to deal with
large ontologies, and to promote efficient reasoning.

29

2.6 Techniques of the modularisation process

The two main approaches in modularisation are ontology partitioning and module
extraction [35]. Ontology partitioning is the process of splitting up axioms into mod-
ules such that the union of all modules is equivalent to the original ontology, while
ontology module extraction deals with reducing an ontology to a sub-module to cover
a specific subject domain. As such, different techniques are used for the approaches.
Commonly, for partitioning, structure-based approaches are used [4, 58, 138], while
for module extraction there is usually some semantics and human intervention in
techniques [114, 131, 159]. In this section, we describe various approaches that may
be applied to generate ontology modules.

A common technique in module extraction is the traversal approach, whereby
based on an element of the input vocabulary, relations in the ontology are traversed
to gather concepts to be included in a module. An example of this is depicted in
Fig. 2.1. Tools that are based on the traversal approach are PROMPT [113] and
KMi [33]. Seidenberg and Rector propose the segmentation approach to query-based
modularity [141]. This approach exploits semantic links between ontology entities to
extract relevant segments of an ontology, given an input entity. The segmentation
algorithm produces desirable results for the large GALEN ontology; it reduces the
ontology by a factor of 20.

Caffeinated
— Coffee
Decaffeinated I
Hot beverages
Input element Green tea
Tea
Restaurant =TT
Pure
Juice
Mixed
Cold beverages
Sugar-free
Soft-drink
Sweetened

Figure 2.1: The traversal approach in module extraction for a restaurant ontology
where the Tea entity is the input element and by traversing through its related
entities, the Hot beverages, Green tea and Earl grey entities are included in the
module.

All partitioning techniques are based on Graph theory [17]. It has been applied
to solving many problems in varying domains. In graphs, communities are clusters
of nodes that are fairly independent of each other with weak links between them.
Community detection deals with splitting up graphs in order to identify independent
components. Most recently, community detection has increasingly been used in social
network analysis [26, 122, 126]. In social graphs, vertices represent users, places,

30

movies, etc., while edges represent the relationships between them, e.g., friend of,
likes, visits. Similarly, in ontologies, vertices represent classes while edges represent
the relationships between them. As such, there is a strong relationship between the
structure of a social graph and an ontology. This is re-enforced by Mika’s study in
which ontologies are used to extract social networks [104].

Del Vescovo [156] defines the term atom as a building block of an ontology or a
clump of highly inter-related axioms that cannot be split across two or more ontol-
ogy modules. The atomic decomposition of an ontology is the set of atoms that the
ontology has been split into. Decomposition-based module extraction is a method
of partitioning an ontology based on its atomic decomposition. TaxoPart is a parti-
tioning tool with the aim of partitioning large ontologies with the goal of assisting in
ontology alignment between ontologies [58]. The approach in TaxoPart is to trans-
form ontologies into sets of blocks of a limited size and thereafter align the blocks
from different ontologies.

Partitioning tools for ontologies (PATO) [149] is a tool that uses the structure
of the class hierarchy to partition large ontologies automatically. This is performed
in three tasks: creating a dependency graph from the ontology file using existing
ontology to graph converters, determining the strength of the dependencies between
concepts in the ontologies and lastly, determining modules. This is a useful method
in that it ensures that the ontology is partitioned into modules with strong internal
connections and weaker external connections.

For the SWOOP partitioning tool, [73], e-connections are used for guiding the
partitioning process. The main steps in this approach are a safety check, generat-
ing a partitioning graph, and identifying and extracting modules. The partitioning
graph’s language matches that of an e-connection. Elsewhere [100], a partition-based
reasoning framework is used to deal with large knowledge bases. This framework
is composed of graph-based algorithms which assist in automatic partitioning, and
message-passing algorithms which are used for reasoning over the partitioned module.

There are a number of logical approaches used in modularisation; these approaches
focus on satisfying properties such as the local correctness and completeness of the
ontology. These modules are referred to as locality-based modules. Tools based on
locality-based modularity such as the OWL module extractor [30], generate modules
as follows: given an input signature seed, entities of the ontology that reference the
signature seed are preserved in the module. A signature seed is a set of entities used
as a basis to extract a module. Another logical approach in module extraction is to
reduce it to a reasoning problem based on the rule-based language, datalog [131].

Abstraction, the principle of simplifying complex models by removing some un-
necessary details could be applied to ontologies to create simpler modules. Existing
approaches include applying the generalisation (isA) techniques, whereby the abstrac-
tion function returns the parent entity of a given entity [50, 120]. Similarly, using
mereology (the partOf relation) could be applied as a technique where, given an en-
tity, the abstraction function returns the entity that it is part of. Keet [77] proposes
three abstraction types; each can be achieved using a list of abstraction functions.
There is R-ABS (or generalisation) whereby a more detailed element abstracts into its
parent type over a relationship (e.g., a partonomy), F-ABS whereby several entities

31

and their relations are folded into a single parent type, and D-ABS whereby entities
are removed based on their relevance [77]. These types are promising for achieving
abstraction but require additional user input since they use general categories from
DOLCE’s foundational ontology (e.g., Endurant, and perdurant), and to apply this
to a range of domain ontologies, the domain entities will have to be aligned according
to these categories.

Another approach was designed to simplify large ORM models using a list of rules
whereby some roles are deemed less relevant and could be excluded from the model
[22]. Not all the rules from Campbell’s abstraction method can be applied to ontolo-
gies, e.g., unary roles and anchor points are not relevant for ontologies. Furthermore,
Keet [76] concluded that Campbell’s method is influenced by the model used in the
case study; some of the rules become irrelevant when applying them to different mod-
els. Keet modified these rules by replacing the rules that were not applicable, with
domain-independent abstraction mechanisms which may also be applied to ontolo-
gies [76]. All these proposals for abstractions remain theoretical, however, yet their
implementation, if adapted towards ontologies, may be used to simplify an ontology
such that it assists with the ontology comprehension problem.

The Foundational Model Anatomy (FMA) ontology is one of the largest anatomy
ontologies [133]. Difficulty in its reuse has been a motivation for the abstraction of
it [105]. The nature of the ontology is that since it defines features of the human
body, those that are symmetrical are similar, e.g., left and right, proximal, middle,
etc. To create an abstraction of it [105], an ontology design pattern called the selector
pattern is applied to it to remove similar parts of the ontology. However, parts are
to be manually identified for removal.

OWL profile modules are ontologies represented in a less expressive language than
the language that the original ontology is represented in, such that the less expressive
language is one of the OWL 2 profiles [93]. Naturally, applying the restrictions to
ontologies result in ontologies that are a subset of the original ontology, i.e., a module,
by dropping axioms that are outside of a particular language fragment. Protégé v4.3
[110] has a feature for generating modules in some OWL profiles.

To summarise, the existing literature on modularisation focuses on a number of
partitioning and modularisation techniques and tools. Most of the tools that exist
are partitioning tools, and modularisation tools with techniques to generate locality-
based and query-based modules. Techniques have been described for abstraction, but
there are no software tools to apply them to ontologies. There is some tool support
for generating OWL profile modules using Protégé v4.3 [110] for generating modules
in the EL. OWL 2 profile. The current techniques in modularisation is shown in
Table 2.1.

2.7 Types of modules

Work has been done on characterising modular ontologies in terms of patterns con-
cerning how imports exist in a set of modules [2]. Four types of patterns were found:
i) one module importing n modules, ii) n modules importing one module, iii) n mod-

32

Table 2.1: A summary of the current techniques of modularisation; a tick indicates
those techniques that have a tool.

Author Technique
Noy and Musen [113] Traversal
d’Aquin et. al [33] Traversal
Hamdi et. al [58] Partitioning

Stuckenschmidt and Schlicht [149] | Partitioning

Partitioning and

Kalyanpur et. al [73] Locality-based

NINSNNNNNHE
=}

Cuenca Grau et. al [30] Locality-based
Language
Musen [110] simsliﬁcgation
Seidenberg and Rector [141] Traversal
Del Vescovo [156] Partitioning
MacCartney et. al [100] Partitioning
Romero et. al [131] Locality-based
Campbell et. al [22] Abstraction
Keet [76] Abstraction
Mikroyannidi et. al [105] Abstraction

ules importing n-1 modules, and iv) pattern mix that combines the previous three
patterns. The characterisation is at a starting point; however, it is solely based on
three structural criteria (size, cohesion, and coupling) and patterns based on ontology
imports [2].

Borgo classifies modules according to their purposes [20] where there are three
main types of modules with purposes: 1) modules for a single ontology, those modules
which aid with organising and managing domain coverage, 2) modules for several on-
tologies, basic functionality that when combined lead to better quality ontologies, and
3) modules for everything, which has several different meanings such isolating/devel-
oping branches of a taxonomy, collecting categories according to a domain (medicine,
engineering,) isolating patterns, separating systems to improve ontology matching,
and more.

2.8 Evaluation metrics of modules

A fair amount of work has been conducted on the evaluation metrics of modules.
In this section, we first discuss the existing body of work on evaluation metrics and
thereafter provide a list of each existing metric.

A study [35] has been conducted whereby d’Aquin et. al review existing tools
in terms of modularity criteria. Those criteria for evaluating the generated modules
includes logical criteria, e.g., local correctness, structural criteria e.g., size of module,
and intra-module distance, software criteria, e.g., encapsulation, and independence,

33

quality criteria, e.g., module cohesion, and relational criteria, e.g., connectedness, and
inter-module distance. The application criteria, for evaluating the modularisation tool
is based on criteria such as performance and use of modules. The results of the study
[35] show that: 1) no single approach can meet all the criteria, 2) there is no universal
way to modularise an ontology, and 3) the modularity technique depends on the sce-
nario for it. In other work, Loebe [98], proposed a number of requirements for logical
modules, such as logical correctness and completeness. Loebe also acknowledges that
the requirements do not hold for all applications and that specialised methods should
be applied for different applications.

Pathak et. al [124] identified main properties that modules need to satisfy, such
as size, correctness, completeness, and evaluated these using existing tools. Pathak
et. al [124] found that not all the techniques satisfy all the evaluation techniques.
For instance, the authors express that there is a risk using graph-based techniques
because they cannot satisfy the criteria of localised semantics because the ontology
is partitioned into disjoint sets thus the meaning of every concept is not preserved
as the original ontology. Tartir et. al [151] propose richness criteria to measure the
quality of ontologies. This criteria is based on the amount of relational information
in an ontology compared to the number of classes, e.g., the inheritance richness mea-
sures the number of subclasses per class and the attribute richness is the number of
attributes per class.

Schlicht and Stuckenschmidt created a set of structural criteria for ontology mod-
ules [137]. The authors argue that the structural criteria has an effect on efficiency,
robustness and maintainability for the application of semantics-based peer-to-peer
systems. The structural criteria proposed include connectedness, size, and redun-
dancy of representation. Connectedness of a module describes the interaction of
axioms in different modules. Redundancy of representation measures the amount of
duplicated axioms in a set of ontology modules. A high value of redundancy entails a
large number of shared knowledge on the ontology modules which causes higher main-
tenance of a set of modules. The authors propose quantitative functions which can
be used to measure each criteria value formally. The function to measure the size of a
module focuses on the ‘appropriate’ size of a module where an appropriate module is
deemed to have 250 axioms. SWOOP and PATO modularity tools are then evaluated
using these structural criteria. Schlicht and Stuckenschmidt [137] found that SWOOP
favours modules with a good connectedness, over modules with suitable size values.
With PATO, a threshold value could be selected and as it is increased, so is the size
suitability of the module, while the connectedness value worsens.

Yao et. al introduce cohesion metrics for ontologies [164]. Cohesion generally
refers to the extent to which entities in a module are related. The metrics that they
propose for this are: number of root classes, number of leaf classes, and average depth
of inheritance tree of all leaf node. These metrics, are not aimed at evaluating the
quality of modules, however, but are rather general for all ontologies. In light of this,
Oh et. al present new metrics for cohesion to measure the strength of the relations in a
module [118]. The work on metrics in [39] focus on semantic dependencies to measure
the coupling and cohesion of ontology modules. The coupling and cohesion metrics
use the notion of strong and moderate dependencies between entities. However, there

34

are certain relations in an ontology that are neither strong nor moderate (relations
containing the intersections of classes). To measure the coupling of an ontology,
researchers propose metrics based on the number of externally defined referenced
concepts [119]. This, however, does not take into account external links that different
modules share. Oh and Ahn [115] have improved on this to consider the external links
between different modules based on whether the link is hierarchical or relational.
However, their metric is simply a sum value of the number of each type of links
between modules, which does not measure the complete interdependence of a module
since it only considers one type of variable in the module. We now summarise a list
of evaluation metrics from the literature mentioned in this section together with the
definition for each metric.

Correctness: Correctness states that every axiom that exists in the module also
exists in the source ontology and that nothing new should be added to the
module [98, 31, 35, 124].

Completeness: Completeness is when the meaning of every entity in a module
is preserved as in the source ontology [98, 31, 35, 124].

Coupling: A measure of the degree of interdependence of a module [48, 118,
115, 119].

Cohesion: Cohesion refers to the extent to which entities in a module are related
to each other [48, 118, 115, 164].

Size: Size is the number of entities in a module (the number of classes, object
properties, data properties, and individuals in a module) [34, 35, 118, 137,
124].

Redundancy: Redundancy is the duplication of axioms within a set of ontology
modules [137].

Appropriateness: Appropriateness is measured by mapping the size of an on-
tology module to some appropriateness function value between 0 and 1.

Inter-module distance: The inter-module distance in a set of modules has been
described as the number of modules that have to be considered to relate
two entities [34, 35].

Intra-module distance: The intra-module distance in a module is the distance
between entities in a module [35].

Encapsulation: Encapsulation is a metric that holds when “a module can be
easily exchanged for another, or internally modified, without side-effects on
the application can be a good indication of the quality of the module” [35].

35

Independence: Independence evaluates whether a module is self-contained and
can be updated and reused separately [35].

Attribute richness: Attribute richness is defined as the average number of at-
tributes per class [151].

Inheritance richness: Inheritance richness is defined as the number of sub-
classes per class in an ontology [151].

2.9 Discussion

We analysed modules and literature on modules using content analysis as a research
method to identify common components at the onset of the Chapter. While content
analysis is useful for gathering meaningful information from a large and diverse body
of work, it also has an issue. The availability of resources limits the analysis. For
modules, this means that if some modules were found in repositories and not in
existing literature, this would have been overlooked if the analysis only focussed on
ontology modules found in repositories. Similarly, some modules are described in the
literature but not available online. To deal with this, we used a variety of resources
for our analysis, from both literature and repositories from the web.

The analysis of existing modules revealed that modules can be characterised by
a use-case, techniques, type, property, or evaluation metric. Identifying these dimen-
sions, bring us a step closer to achieving the goal of a foundation for modularity aimed
at guiding the developer with the modularisation process. The literature presented in
this Chapter demonstrated some of our problems presented regarding modularity in
Section 1.2. The research about modularisation techniques reveals that about half of
the techniques are theory-based only without tool implementations. For the abstrac-
tion techniques, the ones that do exist are geared towards conceptual data model or
specialised for the FMA ontology and cannot be applied to ontologies in general, nor
is there any tool implementation. From the work on evaluating an ontology module,
while there are some existing metrics, it is not clear how to apply them to modules
to check if a module is of good quality or not.

From this Chapter, it was found that: 1) Current definitions regarding modularity
are not sufficient; they are too restrictive, and not exhaustive enough to apply to the
various existing modules. 2) Indeed, there do exist dimensions which can be used
to classify modules which we identify as the use-case, type, technique, property, and
evaluation metric. 3) The current literature on modularity reveals that tool-based
support for abstraction techniques of modularity is lacking and that there are some
evaluation metrics for modularity, but there is no way to check if a module is of good
quality.

36

2.10 Conclusion

This chapter is a literature review of the research that has been conducted on mod-
ularity to date. Various dimensions for modularity were identified from the body of
work: use-case, technique, type, property, and evaluation metric. Identifying these
dimensions is a first step toward creating a foundation to guide the modularisation
process. In addition, we have an idea about what is lacking with regards to modular-
ity. Existing evaluation metrics are not sufficient to apply to different modules, and
techniques for modularisation are lacking.

In the next chapter, we use the dimensions for modularity and the body of work
discussed here to define and populate the modularity dimensions toward creating a
framework for modularisation.

37

Chapter 3

Dimensions of modularisation

The increasing usage of ontologies in heterogeneous domains has led to the devel-
opment of large and complex ontologies. Such ontologies cause great difficulties for
humans to understand properly and apply them, and for computers to process and
reason with them. In order to assist with this, a large amount of research has been
conducted on the notion of ontology modules. A number of techniques, tools and
metrics for ontology modularity have been published in recent years. However, while
there is a plethora of work on ontology modularity, there is no structure or foundation
for it. To create a foundation for modularity, the dimensions of modularity need to
be identified and defined. There are no well-defined ideas or criteria concerning mod-
ularity, causing great difficulty when attempting to create and evaluate an ontology
module. This demands for the analysis and guidance of such aspects of modularity.
The aim of this Chapter is to define the dimensions of modularity towards the creation
of an empirically-based framework. This will serve as a starting point and guide on
modularising ontologies since there are a number of varying aspects and approaches
to modularity that depend on the use-case at hand.

In order to uncover the essence of ontology modularity, we identify the dimensions
associated with it. There are five essential dimensions for ontology modularity which
affect each other and can be used as a guide to creating an ontology module for a
particular purpose. We begin the Chapter in Section 3.1 where we provide a formal
definition for modularity. Thereafter in the following sections, Section 3.2-3.5 we dis-
cuss each dimension, with their sub-dimension and some examples to demonstrate
their usage. In Section 3.6, we perform an experimental evaluation aimed at classi-
fying a set of ontology modules using the dimensions. We analyse each dimension
against the set of modules which revealed values for use-cases, techniques, types, and
properties for each module. Next, in Section 3.7, we present the framework for mod-
ularity which contains dependencies between the dimensions, aimed at guiding the
modularisation process. We evaluate the framework with ontology and conceptual
data model case-studies in Sections 3.8.1 and 3.8.2. We follow with a discussion in
Section 3.9 and conclude the Chapter in Section 3.10.

38

3.1 Definition

Following the inconsistencies and gaps from the existing definitions for modularity
described in Chapter 2, we now create our own definition for a module. This work in
this section has been published in [85]. Our definition for modularity resolves all the
shortcomings of definitions 1-5 from Section 2.1 as follows:

1. It does not restrict modules to those that exist in a set and together compose
a whole.

2. It allows that modules need not have a source ontology O as in the case where
ontologies are created in a modular fashion from the outset.

3. It does not restrict modules to those that capture all the knowledge of an
ontology over a given signature (locality modules).

It also introduces modularity dimensions such as use-cases, techniques, properties,
and evaluation criteria which have not been previously defined but are important
because they guide the modularisation process. The inclusion of these dimensions
in the definition contributes to an exhaustive, generic, broad definition for modules.
The dimensions introduced in the definition (U, T, P, MT, and EM) are already
fixed and will be presented in following sections of the Chapter.

Definition 6 (Module) A Module M is a subset of a source ontology O, M C O,
or M is an ontology existing in a set such that, when combined, make up a larger
ontology. M 1is created for some use-case u € U, number of u > 1, and is of a partic-
ular type t € T, number of t = 1. t is classified by a set of distinguishing properties
{p1, .., ok} € P, number of p > 1, and is created by using a specific modularisation
technique mt € MT, number of mt = 1, and has a set of corresponding evaluation

metrics {emy, ...,emy} € EM, number of em > 1, which is used to assess the quality
of M.

In the next sections, we describe each module dimension from the definition (U,
T, P, MT, and EM) and populate them by identifying respective sub-dimensions for
them.

3.2 Use-cases

The work in this section until Section 3.5 has been published in [85] and [86]. The
type of module that is created greatly depends on the use-case for which modularity
was considered; because different purposes can lead to different modules. There are
many use-cases for creating and using ontology modules which we identify and discuss
in this section. The different types of use-cases, also referred to as purposes, goals,
benefits or rationale for modularity, has been mentioned in numerous works [34, 35,
124, 139, 155], and we list and describe all of the known use-cases for modularisation
with the aim for the list of use-cases to be exhaustive.

39

Ul: Maintenance Ontologies are constantly evolving. As such, there is a need
for constant updates and maintenance. One person can not easily maintain enor-
mous monolithic ontologies. It is a task that is prone to error and omission [23].
Ontology developers often face difficulty in building and populating an ontology with
many entities and with sense-making, searching and exploration of an ontology. Such
problems are related to the loss of contextual awareness when traversing an ontology
[160]. Dividing an ontology into modules can assist with facilitating the maintenance
of large and highly complex ontologies. A set of modules could be easily managed,
as it is divided into smaller subsets since only specific modules need to be referenced
for maintenance rather than the entire ontology. Not all the modules in a system
need to be modified if there is a change in the ontology; the knowledge update is
localised within the relevant module(s). Maintenance also promotes collaborative
efforts, which is discussed as a use-case in a subsequent section.

U2: Automated reasoning Ontology reasoners do not perform well when reason-
ing over complex and large ontologies of thousands of concepts [160]. Performance
decreases as the ontology size and number of axioms and rules increases. Large on-
tologies cause reasoners to use too much of time and memory and causes the ontology
development environment where the reasoner is implemented in to malfunction. Con-
sequently, reasoners will perform better with regard to efficiency if inference has to be
performed over less knowledge. In some cases, one will only be required to reason over
modules that have been evolved since the last reasoning task. The data mining op-
timisation ontology (DMOP), for instance, has a classification time of approximately
10 minutes for reasoning [78]. It is worthwhile to investigate whether modularisation
could result in improved reasoning time.

U3: Validation It is difficult for a single expert to validate and understand the
model as a whole in a large ontology [160, 147, 38]. In order to solve this, the ontology
could be modularised to a size that is comprehensible by a human. Naturally, smaller
modules are easier for a human to understand which will aid in validation. Identifying
errors such as inconsistency and redundancy, and guaranteeing that the ontology
meets all the functional requirements in a large, monolithic ontology is a difficult
process.

U4: Processing Tools for processing ontologies for different applications such as
those used for engineering, mediation, metrics, and editing do not perform well with
large ontologies [5, 15, 125]. For instance, with the NCI cancer ontology by [54],
the BioPortal visualisation tool [163] took several minutes to load the ontology, and
using the OWL metrics tool' to compute its metrics took 12 minutes to process
before it returned an ontology parsing error, using a machine with an Intel Core 2
Duo Processor with 4GB of RAM. These types of scalability issues are a challenge
for developers when using these large ontologies. As demonstrated, the complexity of
processing for large ontologies is known to be critical. Since smaller ontologies take

"http://mowl-power.cs.man.ac.uk:8080/metrics/lastaccessed:20June2017.

40

a shorter time to open, load, and use with tools, having smaller interrelated modules
instead of large and complex ontologies could possibly improve the performance of
the processing tools.

U5: Comprehension Gibson et al. define comprehension as follows: “We outline
ontology comprehension as the interaction between human agents and the knowledge
expressed in an ontology” [52]. It causes a cognitive overload for humans understand
and use ontologies with thousands of terms. Keet proposes the use of abstraction by
removing some knowledge from an ontology to assist with ontology comprehension
[77]. Since ontologies are sometimes designed and created by domain experts without
expertise in logic, they rely on visual ontology engineering tools for creating ontolo-
gies. Visual ontology engineering tools aid with ontology development but have draw-
backs with large ontologies, being that entities cannot be displayed for easy traversal,
thereby making it difficult to understand the complete ontology. Some approaches
propose model exploration techniques [12, 16] to assist with ontology comprehension
whereby the concepts with corresponding relations of an ontology are visually gener-
ated in order to understand them. For large ontologies, model exploration techniques
could be problematic because of the challenge with ontology processing explained in
the previous section.

Comprehension differs from validation for modules as follows. For comprehension,
the module is created for cognitive reasons whereas for validation, the creation occurs
for suitability. Furthermore, for validation, all components of the ontology need to
be considered. However, for comprehension, or for human understanding purposes,
simpler views omitting unnecessary components can be considered.

UG6: Collaborative efforts Collaborative efforts in ontology development allow a
team of experts to combine their knowledge towards the common goal of creating an
ontology. Using ontology modules is an approach that enables the division of work
tasks. In order to avoid conflict between different versions of the ontology by different
developers, it is sensible to divide the ontology to different modules and allow specific
people to create and modify specific modules without altering the entire system. This
also promotes the parallelisation of ontology development.For instance, there is the
set of myExperiment ontology modules [111] which promotes collaboration among
scientists for publishing and sharing workflows. On a grander scale, there is the
OBO Foundry ontologies [143] aimed at providing interoperable ontologies that are
scientifically accurate.

U7: Reuse At times, developers only require a subset of terms from an ontology
and not the entire system to reuse in another ontology. For instance, in the Subcel-
lular Anatomy Ontology (SAO) ontology [96], there only exist 3D entities. As such,
the BFO-Continuant ontology of the ROMULUS repository [80] can be used rather
than the entire BFO ontology. Thus modular ontologies provide infrastructure for
ontology development whereby ontology modules can be easily extracted and reused.

41

The modular components can then be easily adapted for the application at hand.

In this section, we have defined and described seven different purposes or use-
cases for ontology modularity. The use-cases form the basis for an approach for
creating good and usable modules and will have an effect on the other dimensions
of modularity. We can now answer research question 1(c) from Section 1.4 “What
are the different purposes behind module creation?” The different purposes behind
module creation are presented in this section (Ul - U7).

3.3 Types

We propose that ontology modules can be classified into different types, based on
the nature of the module. Module types have been discussed by Borgo [20]. Borgo
classifies modules as: 1) modules for a single ontology, those modules which aid with
organising and managing domain coverage, 2) modules for several ontologies, basic
functionality that when combined lead to better quality ontologies, and 3) modules for
everything, which has several different meanings such isolating/developing branches
of a taxonomy, collecting categories according to a domain (medicine, engineering, iso-
lating patterns, and more [20]. From existing ontology modules and Borgo’s research
[20], we have identified and refined modularity type dimensions as subtypes which
are classified into four main types of modules: structural, functional, abstraction,
and expressiveness modules.

To identify the subtypes of modules, we perform the following tasks. We gather
a set of ontology modules and analyse their files. We also review existing literature
works about modularisation. Following the analysis of existing modules in Section 2.2
and the review of literature in Chapter 2, we describe each module using keywords
such as ‘taxonomy’, ‘functional’, etc. Thereafter we categorise the modules based on
their keywords into Borgo’s existing types and create a description for each of Borgo’s
existing types. As some of the modules from the literature and the set of ontology
modules could not be categorised using Borgo’s types, the keywords describing them
are then used to create new module subtypes. We also use the keywords to provide
a description for each subtype. We then list all the new and existing subtypes and
group them together into types.

Besides using and refining Borgo’s modularity dimensions as modules subtypes,
we have identified new subtypes: locality, privacy, axiom abstraction, type abstrac-
tion, high-level abstraction, weighted abstraction, expressiveness sub-language, and
expressiveness feature modules. We will describe these module types and subtypes in
the remainder of this section. This work was published in [88].

3.3.1 Functional modules

Functional modules are those in which a large ontology is modularised by dividing it
into functional components or subject domains. This assists with selective re-use of
an ontology. There are subtypes for functional modules which are described here.

42

T1: Ontology design patterns An ontology is to be modularised by identifying
a part of the ontology that can be reused as a best practice for recurring ontology
issues; hence, one can isolate a new ontology design pattern (ODP) [44] for general
reuse. For instance, the Set ODP [27] can be reused for any domain instead of
starting from scratch, and there are several content ODPs. However, not all ODPs
are considered modules; e.g., the Lexico-Syntactic ODPs are not. Ontology design
patterns differ from other modules in that they are specifically created for overcoming
common challenges within ontologies, however, they are still modules according to our
definition.

T2: Subject domain modules A large domain must be subdivided according to
the subdomains present in the ontology. For instance, the set of architectural design
modules [68] such as Spatial ontology, Building construction, among others.

T3: Isolation branch modules A subset of entities from an ontology is extracted.
However, entities with weak dependencies to the signature are not to be included in
the module. For instance, to isolate the ‘endurant’ branch of DOLCE [102], the
dolce:physical-endurant entity is a direct subclass of dolce:endurant to include in the
module, but not the dolce:perdurant because it is linked to dolce:endurant in terms of
participation.

T4: Locality modules A locality module is a subset of the axioms in an ontology
and is extracted for a set of entities. However, unlike the case of T3: Isolation branch
modules, for locality modules, all entities that are dependent on the subset is included
in the module. For the previous example, this means that the dolce:perdurant entity
is to be included in the module, along with others that are related to dolce:perdurant.
T3, and T4 modules are both subset modules but the distinction is that for T4 all
entities that are dependent on the subset are included in the module while in T3,
only entities that are within the respective branch of a subset are included.

T5: Privacy modules A privacy module is one in which some sensitive information
is removed so that privacy is preserved for a particular application.

3.3.2 Structural modules

Structural modules are those ontologies that have been partitioned into modules
based on structure and hierarchy. The focus of the modularity is on the syntax of the
ontology. In this case, each module is to be separate from one another. There are
subtypes for structural modules which are described here.

T6: Domain coverage modules There is an ontology covering a domain, and
developers wish to facilitate ontology maintenance by dividing ontologies structurally,
without considering the semantics of the ontology. Hence, the modules are divided
by their graphical structure and placement of entities in the taxonomy such that

43

similar size modules could be generated. The set of modules then cover the entire
domain. If the ontology modules are to be maintained collaboratively by a team
with a specific number of ontology developers, the number of modules to be created
could be specified, and the structure of the ontology is exploited to create modules.
For instance, the Foundational Model of Anatomy Ontology [133] contains over 100
000 entities describing the exhaustive biomedical informatics domain. This could be
modularised structurally for ease of use.

T7: Ontology matching modules An ontology must be modularised to assist
with ontology matching by partitioning it into disjoint modules so that there is no
repetition of entities when matching occurs. Most matching techniques implement
structural or string-matching techniques; hence the semantics of the original ontology
need not necessarily be preserved. For instance, the Common Anatomy Reference
Ontology (CARO) [57] aims at aligning existing anatomy ontologies. To assist with
aligning it to domain ontologies, CARO could be partitioned into smaller modules.

T8: Optimal reasoning modules A large ontology is to be divided into smaller
modules to assist with overall reasoning over the ontology and to ensure that reasoners
do not malfunction. The DMOP ontology contains over 758 entities and over 4000
axioms and takes almost 10 minutes for the reasoner to perform classification; it would
be less time-consuming to maintain and extend if localised reasoning in a module
would be possible. This differs from creating modules that are of a less-expressive
ontology language which is discussed later.

3.3.3 Abstraction modules

For abstraction modules, some detail must be hidden from the ontology to create
a simpler view of the ontology making it ‘lightweight’ with less detail. There are
subtypes for abstraction modules which are described here.

T9: Axiom abstraction modules This is a module having fewer axioms with
object properties relating classes, thereby decreasing the horizontal structure of the
ontology. For instance, to create taxonomies for classification purposes from ontolo-
gies.

T10: Entity type modules This is a module where a certain type of entity is
removed from the ontology, e.g., data properties or object properties. For instance,
removing the application-specific instance data (individuals) from an ontology to reuse
in another application.

T11: High-level abstraction modules This is a module where only higher-level
classes of the ontology are required, thereby decreasing the vertical structure of the
ontology. For instance, the DMOP-branch-Toplevel module [78] containing only the
high-level entities of DMOP.

44

T12: Weighted modules The developer decides on entities in the ontology that
are more important than others. For instance, using abstraction rules to assign a
higher weighting to entities that are deemed more important than others [22, 76].

3.3.4 Expressiveness modules

For expressiveness modules, an ontology is modularised according to a specific ontol-
ogy sub-language by removing some of its expressive power, where it is not required

for certain applications. There are subtypes for expressiveness modules which are
described here.

T13: Expressiveness sub-language modules These modules contain limited
language features that are captured in a sub-language of a core ontology language.For
instance, the OpenGalen [128] module in OWL 2 EL [109] was created to test the
lightweight ELK [74] reasoner for EL ontologies.

T14: Expressiveness feature modules These modules contain limited lan-
guage features that are not necessarily defined by any sub language and consider
modelling alternatives to preserve the meaning of the ontology. For instance, the
DMOP-WithoutInverseRoles modules was created by removing the OWL InverseOb-
ject Properties language feature and replaced with the OWL ObjectlnverseOf axiom
[78].

By refining Borgo’s modularity dimensions and analysing existing modules, in this
section, we have identified four main module types: structural, functional, abstrac-
tion, and expressiveness. We have classified and described the subtypes for each of
these main module types. We can now answer research question 1(a) from Section 1.4
“What are the different types of modules that exist?” The different types of modules
that exist are presented in this section (T1 - T14).

3.4 Properties

Modules have properties that are associated with them. In this section, we identify
and describe the properties that modules exhibit. Properties exist in isolation in a
single module, and also in sets of related modules. In order to identify properties
that modules exhibit, our approach is as follows. We gather a set of ontology mod-
ules. We review existing works pertaining to ontology modularisation and inspect the
ontology module files to draw out the properties which modules exhibit. We define
each property with use of the existing literature where applicable. Thereafter, we
separate these properties into those that are found in a single module, and those that
are found in a set of related modules.

3.4.1 Properties of a module

In this section, we describe properties that a module exhibits by itself.

45

P1: Seed signature A seed signature occurs when the user specifies some input
entity to base the resulting module on [30, 156, 157]. All entities related in some way
to the entity chosen as seed signature are included in the module. For instance, for
modularising the DOLCE ontology for a module with only wholly-present objects,
the ‘endurant’ entity is selected as a seed signature [80].

P2: Information removal Information removal is when parts of the ontology are
selected to be removed from the ontology, resulting in a module without all the detail
of the original ontology. For information removal, an input entity need not be selected
as a basis for modularisation as in the case for the seed signature characterisation
above. For instance, the NCS ontology on Bantu noun classes [24] reuses only part
of the GOLD ontology, as it has no need for, among others, phonetic properties.

P3: Abstraction Abstraction is the property of hiding undesirable information
from an ontology at different levels [53, 76]. Abstraction is used as a principal to
give the user a simplified view of the ontology for comprehension purposes. For
modules with this property, there exists information with more or less detail in a set
of modules. However, the source ontology with all the original information still exists
in the system as a related module.

P3.1: Breadth abstraction The type of abstraction that occurs in an on-
tology where some relational properties of entities in the module are removed
in order to provide a simpler view of the structure of the ontology, therefore the
‘breadth’ of the ontology is reduced.

P3.2: Depth abstraction The type of abstraction that occurs in an ontology
where high-level classes from the original ontology exist and lower-level classes
are removed; therefore the ‘depth’ of the ontology is reduced.

P4: Refinement Refinement occurs in ontology modules where some new axioms
are added to the module, to assist with inter-module links, or when computationally-
expensive ontology language features are modified resulting in new axioms. For in-
stance, to reduce reasoning time for the DMOP ontology, the InverseObjectProperties
axiom was removed and replaced with the OWL ObjectInverseOf axiom [78].

P5: Stand-alone This describes a module that has no external links or imports
with other ontologies and can exist on its own. It is self-contained and can be modified
without having dependencies on other modules. For instance, the BioTopLite module
[140], a top-domain level ontology for the life sciences domain, does not contain any
inter-module relations with other ontologies nor does it have any import statements
linking other ontologies to it.

46

P6: Source ontology A source ontology is the original ontology which has been
modularised in some way resulting in the module. For instance, the DMOP-profile-EL
module has the source ontology DMOP [78].

P7: Proper subset This describes a module that contains a subset of entities
that are contained in another source ontology. The module has fewer entities than
the source ontology. For instance, the FMA subset ontology module omits all rela-
tionships other than is_a, part_of, and has_part and thus has fewer entities than the
original FMA ontology [133].

P8: Imports This describes a module that contains other ontology components, by
using the owl:import statement declared for importing another ontology. For instance,
the Spatial Ontology module [68] from the set of architectural design modules that
imports the DOLCE ontology [102].

3.4.2 Properties of a set of related modules

In this section, we describe the properties that a set of modules exhibit altogether,
and in relation to one another.

P9: Overlapping Overlapping in modules refers to cases where entities in an on-
tology system can be found in more than one module of the system [123]. These
modules partially cover the same concepts. In overlapping modules, entities in differ-
ent modules may have dependencies on one another. Thus changes to one module in
a system affect some other modules. This is shown in Figure 3.1.

Module C

Module A

Module B

Figure 3.1: Overlapping modules in an ontology system. Modules A, B, and C are
three ontology modules that are overlapping. Module A contains knowledge from
Module B, Module B contains knowledge from Module A and C, and Module C
contains knowledge from Module A and B.

47

P10: Mutual exclusion Mutual exclusion (or disjointness) in modules refer to
cases where entities in an ontology system are not found in more than one module of
the system; they have no entities in common [123]. This is shown in Figure 3.2. The
advantage of this type of module is that the modules in the system can be managed
easier as there is less chance of conflicts among modules since the entities are not
common. For instance, if there were entities that were common among modules,
and a user altered the axioms defining the entity in one of the modules, the entity
definition would be different in the other modules. It is difficult to create mutually
exclusive modules for most ontologies because entities in ontologies have referencing
axioms to each other therefore there is great difficulty ensuring that entities are not
common among modules.

Module A Module B Module C

Figure 3.2: Mutually exclusive modules in an ontology system. Modules A, B, and C
are three ontologies that are mutually exclusive. Module A, contains no knowledge
of modules B, and C; Module B contains no knowledge of modules A, and C; and
Module C contains no knowledge of modules A, and B.

P11: Union Equivalence Union equivalence occurs when the union of a set of
modules is semantically equivalent to the original ontology. This is shown in Fig-

ure 3.3.
Module A Module B
Module C

Ontology O

Figure 3.3: Union equivalence occurs for modules A, B, and C; the union of them is
equivalent to ontology O.

48

P12: Partitioning Partitioning occurs in large ontology whereby it is structurally
divided into a set of independent modules, thereby allowing concurrent reuse in dis-
tributed systems [35]. Independence is meant that the modules cover sufficiently
different knowledge of the domain; e.g., representing the anatomical knowledge about
the limbs and eyes of an animal. Theoretically, a module having the partitioning
property should also have the P10 (mutual exclusion) and P11 (union equivalence)
properties but this might not always be the case in practice. This will be demon-
strated later in a classification experiment in Appendix A, specifically in Table A.1.

P13: Inter-module interaction This describes modules that have links to other
modules to relate entities in a similar way to their existence in the original ontology
to ensure that the knowledge is preserved. Inter-module interaction among modules
exist if there are either bridge ontologies in the set to link together modules, or
linking languages are explicitly used within the modules. For instance, in the EDAM
bioinformatics ontology [70], the object property is_format_of has as domain the class
Format and range Data. When it was partitioned with SWOOP, the Data class was
present in the first partition while Format and is_format_of were present in the third
partition, having used e-connections to create interaction among these entities that
existed in different modules.

P14: Pre-assigned number of modules This occurs when the number of mod-
ules to be created or generated in a system is known prior to development. For
instance, the modularisation tool requires one to state the number of to-be-generated
modules upfront, or an ontology is to be divided into a number of modules based
on the developers that will collaboratively create and maintain the ontology. This
property differs in module sets and can be used to annotate a set of ontology modules.

The properties that we have identified in this section are used to characterise and
distinguish modules. We can now answer research question 1(b) from Section 1.4
“What are the properties with which we can characterise each module type?” The
different properties with which we can characterise modules are presented in this
section (P1 - P14).

3.5 Techniques

In the previous section, we introduced module properties. Here we identify possible
techniques from existing approaches that may be used to create modules and classify
them into categories. Such techniques are not only restricted to those from the
ontology field; there are also approaches from the graph and network theory fields.

3.5.1 Graph theory approaches

Graph theory approaches are those that have been designed to be applied to the
general problem of community detection. In graphs, communities are clusters of nodes
that are fairly independent of each other with weak links between them. Applying

49

graph theory techniques to ontologies deals with modularising them according to
structure in order to identify modules together with the inter-module links. The
advantage of such an approach would be that if there is already a set of modules,
algorithms can be applied to improve the modules until the best set of modules has
been generated. The disadvantage of such an approach is that the final ontology
strongly depends on the initial partitioning and if there is no information about how
the initial partitioning ought to be performed, the method performs poorly. The
various graph theory approaches are discussed in the remainder of the section.

MT1: Graph partitioning Graph partitioning is when a large graph is divided
into partitions with the condition that vertices are not shared across different parti-
tions, and the number of partitions is known. In terms of ontologies, graph partition-
ing algorithms would be most useful in cases where structural division of the ontology
modules is a driving force.

Several graph partitioning algorithms have been proposed for ontology modular-
isation [3, 4, 73, 139]. In the PATO partitioning tool [139], graph partitioning is
performed by using maximal line islands [10] to compute partitions in the graph. A
maximal line island checks that for a set of nodes, the strength of the connection be-
tween the nodes inside the set is higher than the strength of any connection to nodes
outside the set [10]. Unlike traditional graph partitioning, in PATO, the number of
partitions to be created is unknown prior to the modularisation.

MT2: Modularity maximisation Modularity maximisation methods aim at op-
timising the connection between nodes in graphs. To perform this technique, the
modularity function () measures the concentration of edges within modules com-
pared with the random distribution of links between all nodes regardless of modules.
In terms of ontologies, this means that regardless of the location of the concepts in
the hierarchy, modules will be created based on concepts that have strong axiomatic
relations with others.

3.5.2 Statistical approaches

Statistical approaches emphasise on using statistical equations to create ontology
modules. In order to do this, the entities in the ontology are converted to data.
Thereafter, statistical methods and functions are applied onto the data with the aim
of creating modules. Thus, the ontology is viewed as a data set in order to modularise.

MT3: Hierarchical clustering Hierarchical clustering [130] is used to group to-
gether data, when little is known about it, such as the number of partitions it should
be split to. It is a method aimed at building a hierarchy of clusters, either by an
agglomerative or divisive strategy. An agglomerative strategy is one in which each
data point is placed in separate clusters, and clusters are merged based on a given
distance function between data points in clusters. A divisive strategy is one in which
the data is divided recursively as one moves down the hierarchy:.

50

Hierarchical clustering is a good approach to use for data with a hierarchical
structure. A hierarchical structure is one in which every entity in a system, except
the top-level entity, is a subordinate to at least one entity. Hierarchical clustering is
a good approach to use for data with a hierarchical structure [42]. Ontologies have a
hierarchical structure; thus this approach would be ideal for modularising ontologies.
Furthermore, since hierarchical partitioning does not require initial knowledge about
the structure and number of partitions [42], it would serve as an ideal automatic
approach for ontology modularity.

To date, there has been one application of using hierarchical clustering to perform
ontology modularity where Garcia et. al [47] found that the two hierarchical clustering
algorithms obtained similar results when compared to other graph theory approaches.
However, Garcia et. al [47] also concluded that semantically other approaches worked
better, at least for the case of modularising a version of the pizza ontology, because
their modules grouped together vegetarian, non-vegetarian, and general pizza entities
while the modules of the hierarchical approach did not.

3.5.3 Semantic approaches

In the previous section, the structure of the ontology was the driving force for mod-
ularisation. In this section, the entities and axioms of the ontology are used for the
modularity approach. The common aspect in each of these approaches is that it is
user driven, i.e., a user provides some initial information about entities to drive the
modularisation process.

MT4: Locality modularity Locality is used to generate modules based on a given
signature with the condition that conservation extension holds for the given module.
Conservation extension is the notion that every axiom’s meaning from the original
ontology is preserved in the module. Conservation extension is greatly influenced
by the atomic structure of the ontology. In an ontology, an atom is defined as: “a
maximal disjoint subset of an ontology such that their axioms either appear always
together in modules, or none of them does” [156]. For instance, if one were to generate
a locality module of endurant entities (an object that is wholly present at all times)
from the DOLCE ontology, a number of perdurant entities (entities unfolding in time,
e.g., processes) would also be contained in the module, because there exists an axiom
endurant C 3 participant-in.perdurant , in the DOLCE ontology. Therefore the module
would not be restricted only to endurant entities because the conservation extension
of the original ontology is guaranteed. Clearly, the atoms in the DOLCE ontology
are large and therefore not suitable for locality approaches, as shown by [80]. On the
other hand, biological ontologies from the BioPortal repository [163] have been shown
to modularise well using locality methods [157], thanks to them having on average
just two axioms per atom.

MT5: Query-based modularity Query-based approaches require that the user
initially creates a query with certain conditions in a query language such as SPARQL

51

and a module is automatically created based on that query. Noy and Musen [114] use
queries to allows the user to create a view of an ontology by selecting an input entity
and traverse through the ontology, to select other relevant entities to be included in
the module until a particular depth is reached. Similarly, given an input entity, the
KMI tool [33] recursively inspects the ontology to include the other relevant elements
found in the definition of the entity. This type of modularity depends heavily on user
input as the user decides, at every step, which entities to be included in the ontology.

The segmentation approach to query-based modularity exploits semantic links
between ontology entities to extract relevant segments of an ontology, based on an
input entity [141]. It works as follows, given an input entity, first traverse upward
through the hierarchy, gathering all its superclasses and ancestor classes to include
in the module. Thereafter, travel downwards from the input entity and gather all
its subclasses and descendant classes to include in the module. It does not include
sibling classes in the module. An evaluation of this segmentation approach reveals
that the large GALEN ontology of medical terminology was reduced by a factor of
20 [141].

MT6: Semantic-based abstraction Abstraction, the principle of simplifying
complex models by removing some unnecessary details, is applied to ontologies to
create simpler modules. Semantic-based abstraction is an approach whereby the se-
mantics of the model is analysed using a set of pre-defined rules to determine key
entities, where the key entities are deemed more important than others [22, 76].
For instance, for the Blood and Bacteriocins ORM models [76], mandatory roles are
weighted with 10 points while single-role set constraints are weighted with 5 points.
Similarly, this could be applied to ontologies by designing a set of weighted rules to
guide the ontological abstraction process.

MT7: A priori modularity An a priori modularity method [152] is one in which
the modular structure of the domain is decided, and the modules are created at the
onset.

MT8: Manual modularity For manual modularity, the ontology developer de-
cides which entities and axioms should be removed from an ontology, and manually
creates a ‘custom’ module based on this. Unlike the a priori modularity method, here
the modules are not created at the onset of development, but created later on, based
on some existing ontology. For instance, for the DMOP-WithoutInverseProperties
module, some language features of the ontology were manually removed to improve
the reasoning [78].

MT9: Language simplification Language simplification techniques are those
that focus on simplifying the ontology language of an ontology by removing some
language features present in the ontology. This results in a simplified module of an
ontology with limited expressivity, e.g., a module where the cardinality constraints
have been removed.

52

In Table 3.1, the techniques that are implemented by existing modularisation
tools are displayed. The existing tools implement graph partitioning, query-based
methods, semantic-based abstraction, and locality-based methods; other techniques
are lacking in tools. We can now answer research question 1(d) from Section 1.4
“Which techniques have been proposed to perform different types of modularisation?”

The different techniques that are proposed to perform modularisation are presented
in this section (MT1 - MT9).

Table 3.1: The modularisation techniques implemented by each tool.
Modularity Tool | Modularisation Technique | Created | Updated

SWOOP [73] MT1: Graph partitioning 2004 2007
TaxoPart [58] MT1: Graph partitioning 2009 unknown
OWL module MT4: Locality-based 2008 2011

extractor [30]
Protégé copy/move/ | MT4: Locality-based

delete axioms [110] | MT9: Language simplification 2008 2016
PATO [110] MT1: Graph partitioning 2008 unknown
PROMPT [113] MT5: Query-based 2004 2006

The dimensions in Section 3.2- 3.5 now need to be linked to ontology modules
towards creating a framework for ontology modularity. To do this, we perform an
experimental evaluation in the next section by classifying a set of modules with the
dimensions.

3.6 Classifying modules: An experimental evalua-
tion

There is a lack of a foundational theory for ontology modularity; e.g., it is unclear
which evaluation metrics are to be considered for different module types and what
type of modules different techniques produce. In [35], it was found that the evalua-
tion of a modularisation depends on an application’s requirements, that there is no
universal modularisation, and that a formal well-defined framework for modularity is
lacking. This opens up a number of issues and questions; e.g., difficulty in selecting
the appropriate modularity technique, insufficient modularity tools for applications,
and it is unclear which one should be applied for which scenario. For instance, we
tried to modularise the Data Mining OPtimization (DMOP) ontology [75] with sev-
eral modularisation tools, but all modules were too large to use [78], and extracting
content on object properties from DOLCE with the ‘copy’ feature, their asserted
characteristics such as transitivity were not extracted [79]. Also, existing techniques
are not sufficient in creating compact modules [35, 80]. Evaluation of modularisation
techniques reveals that some tools fail to partition large ontologies because they fo-
cus on preserving the logical properties of the modules while others lose some of the

53

relational properties of the ontologies and that most tools generate views instead of
module file outputs [116, 117].

In praxis, it also remains largely unclear how to manage ontology modules once
they are generated and start leading their own life, being merged with or imported
into another ontology. For instance, one may have slimmed a highly axiomatised
module into an OWL 2 EL fragment of it or extracted only two main branches of the
class hierarchy and their relations: in the former case, it would not matter for one’s
project if the original ontology was augmented with axioms whose expressiveness is
beyond OWL 2 EL, in the latter case, one may have to re-generate the module to
reflect the changes made to the original one. Currently, there is no way of knowing
this automatically and modules are typically not even annotated with such type of
information (unless they were created for certain experiments), let alone annotated
in a structured way across modules.

These issues raise a plethora of questions not only from an engineering viewpoint
to create tools, but also, still, from a conceptual and ontology engineering viewpoint.
We now raise a few ‘mini questions’ regarding modularity, in addition to the main
research questions of the thesis:

1. How do module types differ with respect to certain use-cases?
2. Which techniques can we use to create modules of a certain type?
3. Which techniques result in modules with certain annotation features?

The purpose of this experimental evaluation is to classify a set of ontology modules
with the dimensions for modularity from this Chapter: use-cases, types, techniques,
and properties. This will lead to the development of a framework for modularity.
The classification in the section was published in [85]. We apply the grounded theory
research method for this classification. This research method is used for “develop-
ing theory that is grounded in data systematically gathered and analyzed” [146].
Grounded theory allows us to construct theories or finding through analysing real-life
data. Typically, a grounded theory study begins with some questions and data We
have three research questions identified for this study, and the data we will use is
discussed in the next section. We have selected this approach for a number of rea-
sons: 1) It allows us to keep an open mind; since grounded theory is not linked to any
pre-existing data or hypothesis, it has the potential to generate new and innovative
theories, and 2) Validity: it will accurately represent real-world settings since we will
be using real-life data.

3.6.1 Materials and methods

The method for the experiment is as follows:

1. We collect ontology modules from ontology repositories and existing literature
on modules.

o4

2. Classify each ontology module according to its use-cases, techniques, proper-
ties, and types. This classification is performed manually for each module by
reading through the documentation or published works of an ontology module
and looking at the annotation of the ontology module file. We also inspect the
ontology module file to determine its properties and type.

3. Conduct a statistical analysis to determine the frequency of dimensions occur-
ring in each module.

The materials used for the experiment were as follows: Protégé v4.3 [110], SWOOP
v2.3 [73], OWL Module Extractor [30], TaxoPart [58], and a set of ontology modules.
The sample size was 189 ontology modules of varying domains, such as architectural,
data mining, biological, chemical, linguistic, among others.

Of these 189 modules, 146 belonged to 11 sets of inter-related modules. A set
of inter-related modules is when a large subject domain is represented by a set of
modules rather than a large ontology. For instance, one of the 11 sets is the 10
modules of the myExperiment [111] ontology. The full list of ontologies used for this
experiment is shown in the classification table in Appendix A.

Our tests were obtained on a 3.00 GHz Intel Core 2 Duo PC with 4 GB of memory
running Windows 7 Enterprise. All the test files used for this evaluation can be
downloaded from www.thezfiles.co.za/Modules/testfiles.zip.

3.6.2 Results and Discussion

The first step for module classification was to determine the use-cases for an ontology
module. In most cases, the documentation for a module would describe some rationale
for creating the module which we used as a use-case, e.g., modularising DMOP for
automated reasoning (U2) [78]. In some cases, we had to assume the use-case, e.g.,
that the BFO Occurrents module was created for reusing a specific subset of the BFO
ontology (U7).

Modules that were found on the web include those of type T1 (ontology design
pattern modules), T2 (subject domain modules), T3 (isolation branch modules), T8
(optimal reasoning modules), T11 (high-level abstraction modules), T12 (weighted
modules), T13 (expressiveness sub-language modules), and T14 (expressiveness fea-
ture modules). We could not find any modules of type T4 (locality modules), T5
(privacy modules), T6 (domain coverage modules), T7 (ontology matching modules),
T9 (axiom abstraction modules), and T10 (entity type modules), so we generated
them by using tools (SWOOP, OWL Module Extractor, and TaxoPart) or manually.
74 of the modules were publicly available, and the rest were generated for this study.
Thereafter, each of the modules was classified according to the dimensions: its type,
use-case(s), property(s), and technique.

Given the amount of publicly available modules that were found for the study
(n=74), it appears that many modules were created specifically for this study and
would thus affect the results of the framework. However, a large amount of the gener-
ated modules, 78.3%, (n1=90) of the modules were created as T7 (ontology matching

%)

modules), each with fewer than 5 entities, from just 2 source ontologies using the Tax-
oPart tool. It appears that the nature of ontology matching modules is to have many
tiny modules to promote processing for the ontology matching tools. For the rest
of the generated modules, there was 10.4%, (n=12) generated with SWOOP, 8.7%,
(n=10) manually created, and 2.6%, (n=3) generated with OWL Module extractor.
The classification for each module is shown in the table in Appendix A.

3.6.2.1 Frequency of use-case

The frequency of each use-case among the set of ontology modules is shown in Fig-
ure 3.4. The dominant use-case or purpose among the modules was U6 (collaborative
efforts) which accounted for over 70% of the use-cases. Modules of U6 in the sample
set include the myExperiment [111] and Gist [103] ontologies. Indeed, ontology mod-
ularisation has been motivated by the need for collaboration among multiple ontology
developers in a number of publications [124, 29, 152]. One of the success factors of
the SNOMED ontology project [97] is collaboration, which is unsurprising because
it is large, containing over 300 000 entities and thus requires a team of experts for
development.

Thereafter, U4 (processing) followed with 49.74% of the modules. There were
many such modules in this set because the Spatial [32] and Common Anatomy Ref-
erence Ontology (CARO) [57] ontologies were automatically split with a specialised
ontology alignment partitioning tool, TaxoPart. This resulted in a large number of
modules containing, in most cases, fewer than 5 entities, that would allow for easy
processing for use with automatic alignment tools.

B No. of use-case instances M No. of use-cases instances Mo. of use case instances
forall modules for natural modules for artificially created modules

90.00%
80.00%
T0.00%
50.00%
S0.00%
40.00%
30.00%
20,008 -
10,008
0.00%

Figure 3.4: The frequency of each use-case for the set of 189 modules.

56

Next, U7 (reuse), Ul (maintenance), and U3 (validation) use-cases account for
35.45%, 28.57%, and 28.57% of the modules, respectively. Modules motivated by all
three of these use-cases include the data mining OntoDM [121], myExperiment [111],
and OntoSpace [11] ontology modules whereby a large domain was divided according
to subject domains.

U2 (reasoning) and U5 (comprehension) were the least popular use-cases, with
5.82% and 4.76% of the set, respectively. For reasoning, there was some split domain
DMOP ontology modules motivated for divide-and-conquer reasoning as well as a
less-expressive EL language module for DMOP [78]. For comprehension, there were
lighter versions of ontologies with less knowledge, such as BioToplite based on BioTop
[140], and GFO-Basic based on GFO [61].

From the set of modules, all the use-cases are present for both the natural module
types and the artificially created module types for the study.

3.6.2.2 Frequency of type

Figure 3.5 shows the frequency of each type for the set of 189 modules is skewed toward
module type T7 (ontology matching modules). From the 189 modules, almost half of
them were ontology matching modules; this is because the TaxoPart tool generated
a large number of ontology matching modules for the two source ontologies, CARO
and Spatial ontologies, where each generated module contained less than 5 entities in
most cases. Second, there was a considerable number of T2 modules (subject domain
modules), 22.22% (n= 42 modules); some of them were freely available on BioPortal
ontology repository [163] and others were available on their respective project pages.

For the remaining types of modules in the set, there were very few of each type,
ranging from 6.88% to 0.53%. These module types were difficult to find in existing
repositories, and in cases where publications described such modules, URLs to the
test files were not provided, or if they were, the URLs were no longer working. Many
of these modules were generated for this experiment, and in the next paragraph, we
provide a breakdown of which modules were found from existing resource.

The natural modules were T1 (Ontology design pattern), T2 (Subject domain),
T3 (Isolation branch), T8 (Optimal reasoning), T11 (High-level abstraction), T12
(Weighted abstraction), T13 (Expressiveness sub-language), and T14 (Expressiveness
feature). The module types that could not be found naturally, hence generated for this
study, were types T4 (Locality), T5 (Privacy), T6 (Domain coverage), T7 (Ontology
matching), T9 (Axiom abstraction), and T10 (Entity type abstraction).

3.6.2.3 Frequency of technique

For the frequency of techniques among modules, as displayed in Figure 3.6, it is ap-
parent that MT1 (graph partitioning) is the most popular of the techniques, with
54% of the modules. This is because graph partitioning techniques were used by the
TaxoPart tool for the large portion of Spatial and CARO ontology matching mod-
ules, discussed in the previous section. Furthermore, graph partitioning approaches
were applied in the SWOOP partitioning algorithm for splitting up the large domain

57

B Mo. of type instances for B Mo. of type instances for Mo. of type instances for

allmodules natural modules artificially created modules
50.00%
45 .00%
40.00%
35.00%
30.00%
25.00%
20.00%:
15.00%
10.00%

5.00% - r

0.00% - - . . . || . . . -_'___'_l__'___|

g & & & &S & & & @ g e g

TS e g;x\@ S & @

o P 2 > & .
) @t} ‘}\o) @5 4“5@ %& .,?:P I o c'b%‘ -\\P\ o2
S N T F o
‘1\) \f:o q{(" = L o &
< OQ' OQ Lo

Figure 3.5: The frequency of each type for the set of 189 modules; exp. = expressive-
ness, abs. = abstraction.

modules for the Amino Acid [145], Edam bioinformatics [70], and MEO Metagenome
and Microbes Environmental? domain ontologies.

Next, MT7 (a priori) modularity techniques were used for 27% of the modules.
These sets of modules include the set of aforementioned Architectural, Gist, and
OntoDM modules. MT8 (manual methods), accounted for 15% of the modules, in-
cluding, the BioToplite ontology, and the Set ontology design pattern [27]. Lastly,
MT4 (locality-based) techniques accounted for the smallest number of modules, 4%.
These included a module with the seed signature seizure_types, based on the Epilepsy
ontology [134]. Indeed, the locality-based modularity technique and principles have
been discussed in a number of existing works [30, 156, 158, 135] but evidence of such
modules in applications is scarce.

The techniques that were used for the natural module types include MT8 manual,
MT4 locality, and MT7 a priori techniques. The techniques that were used for gen-
erating the artificial module types for the study were MT1 graph partitioning, MT4
locality, and MT8 manual techniques.

From the data, we observe that there is a heavy reliance on using manual methods
for module creation. For 9 out of the 14 module types, manual methods were used for
module creation since tools could not be applied, for instance, the BFO Continuants
module which will be discussed in Section 4.1.1. The remaining 5 were generated
with tools.

2http://metadb.riken. jp/metadb/ontology/MEO last accessed: 20 June 2017.

58

B No. of technigue instances ® No. of technique instances MNo. of technique instances
for all modules for natural modules for artificially created modules

0.00%

50.0:0% ——

A40.00% ——

30.00% ——

20008

10000%

0.00% -
A priori Manual Locality Graph partitioning

Figure 3.6: The frequency of each technique for the set of 189 modules.

3.6.2.4 Frequency of property

For the frequency of properties of modules, as displayed in Figure 3.7, property P5
(stand-alone) and P6 (source ontology) are exhibited in most of the modules (73.02%).
Indeed, a large number of modules in the set contain no links or imports to other
modules and are thus stand-alone, and most modules in the set are based on an
original ontology.

Property P2 (information removal) is present in 68.25% of the modules, mean-
ing that some detail is removed resulting in a smaller module with less knowledge.
Property P7 (proper subset) is also present in 68.25% of the modules. The remaining
properties, P1, P3, P4, P5, P6, and P10, are present in only a few of the modules
ranging from 19.04% to 0.53%. P3.1 (breadth abstraction) is only exhibited in 1 mod-
ule, in the FGA _taxonomy module, that was generated for this study for creating a
bare taxonomy from the original Fungal Gross Anatomy (FGA) ontology®. For the
refinement property, P4, its low presence (4.23%) in the set is no surprise because
refinement is concerned with adding more detail to a module, thus refining it, and go-
ing against the basic definition of modularity in which a module is a smaller subset of
a source ontology. Refinement existed in the DMOP-WithoutInverseProperties mod-
ule because some OWL language features of the ontology were removed to improve
the reasoning but new axioms were added to preserve the semantics of the ontology.
Refinement also occurred in most of the modules that were created by partitioning
using SWOOP because new axioms were introduced to enable linking among them.

There were 11 sets of inter-related modules. 72.73% of them exhibit P9 (overlap-
ping), whereby entities in a set exist in more than 1 module of a set. The overlapping
property in a module ensures the knowledge preservation within a set of modules but

3http://www.yeastgenome.org/fungi/fungal_anatomy_ontology/ last accessed: 20
June 2017.

59

H No. of property instances for ® No. of property instances for ® Mo. of property instances for

all modules natural modules artificially created modules
20.00%
70.00%
B60.00%
50.00%
40.00%
30.00%
20.008
10.0086
0.00% - | | - y [|
& o & &
& & & 4T
; S & e &
3 .
27 o & %;;,3’
&
o &o&} o~
'&é'
e

Figure 3.7: The frequency of each property among modules.

poses other challenges such as module maintenance and consistency. Property P12
(partitioning) was also a prevalent property among sets of inter-related modules, con-
sisting of 45.45%. Since most of the modules were generated using graph partitioning
techniques (recall the CARO and Spatial alignment modules), this is no surprise.
Property P14 (pre-assigned number of modules), was present in 45.45% of the mod-
ules in the set, whereby the number of modules to be created for the system is known.
Such modules include the set of Gist modules, and the set of myExperiment modules.
Property P10 (mutual exclusion) was present in 27.27% of the module set, whereby
entities were not shared across modules; the MEO, CARO and Spatial ontology mod-
ule sets exhibited this property. Property P13 (inter-module interaction) is exhibited
in 18.18% of the ontology module sets; it is present in the set of Amino acid modules
[145], and the set of EDAM bioinformatics modules, thanks to the e-connections links
generated by the SWOOP partitioning tool to allow interaction.

Property P11 (union equivalence), was not present in any of the sets of modules
as existing tools failed to ensure such a property. When the module sets were merged
to check for the union equivalence, there were two reasons for the lack of union equiv-
alence. Firstly, there were extra axioms added to the modules using e-connections for
inter-module interaction thus for some sets, the union of the modules were larger than
the original ontology. Secondly, SWOOP did not preserve the annotation axioms of
the original ontology; thus, for some sets, the union of the modules were smaller than
the original ontology.

For the natural modules, all the properties except P10 (Mutual exclusion), P11
(Union equivalence), P12 (Inter-module interaction), and P13 (Pre-assigned number
of modules) exist. For the artificially created modules, all the properties except P3.2

60

(depth abstraction), P8 (imports), and P11 (Union equivalence) exist.

3.7 A framework for ontology modularity

In this section, we present the framework for ontology modularity. The framework was
published in [85] and [86]. We begin with the methodology for creating the framework
and follow with the dependencies between the ontology modularity dimensions.

3.7.1 Methodology

We have performed the following steps towards creating a framework for ontology
modularity:

1. Identify the issues and questions concerning modularity. These issues and ques-
tions were introduced in Section 1.2 and new specific questions were raised in
Section 3.6.

2. Identify the relevant dimensions concerning ontology modularity. Five main
dimensions were identified from an analysis of existing modules in Section 2.2:
use-cases, types, techniques, properties, and evaluation metrics.

3. Populate each dimension with criteria. For the framework, we define and pop-
ulate four of the dimensions with criteria: the use-cases, types, techniques, and
properties. This is done in Sections 3.2- 3.5. The evaluation metrics dimension
is not included in the framework as it requires additional investigation in a dif-
ferent direction. For evaluation metrics, an investigation needs to be performed
on the quality of ontology modules. Developers need the following: 1) a tool
which includes all the metrics for modules to compute them automatically for
an ontology, and 2) to determine which metric values correspond to which mod-
ule types, i.e., how to measure if a module is of good quality. We investigate
this in Section 4.2.

4. Perform an experimental evaluation using modules whereby modules are char-
acterised according to the dimensions. This experimental evaluation was per-
formed in Section 3.6.

5. Identify relationships between the dimensions of the framework. This follows
in Section 3.7.2.

3.7.2 Dependencies between dimensions

Given the insights obtained in Section 2.8 to elucidate modularity dimensions and
properties, and with the assessment of actual usage of ontology modules and mod-
ularisation by ontology developers (Section 3.6), we go one step further with this
survey by elucidating observed dependencies between the properties. This leads to a
basic framework for modularity, of which the high-level view is shown in Figure 3.8.

61

Based on our comprehensive review of the literature, analysis of ontologies and on-
tology modules, and usage of modularisation tools, to the best of our knowledge, our
framework is indeed exhaustive.

Type Technique Property

Figure 3.8: A high-level view of the framework for modularity.

The dependencies are used to refine and answer the earlier proposed questions:

1. Given that we wish to create an ontology module with a certain purpose or
use-case in mind, which modularity type of module could this result in? (How
do module types differ with respect to certain use-cases?)

2. If we wish to create a module of a certain type, which is the best technique to
use? (Which techniques can we use to create modules of a certain type?)

3. By using a particular technique, which annotation features will the resultant
module exhibit? (Which techniques result in modules with certain annotation
features?)

The dimensions of the framework are related as follows. A module’s use-case
results in modules of a certain type. A module of a certain type is created by a
modularisation technique. Modularisation techniques result in modules with certain
properties.

Answers to these questions are mentioned in following diagrams. For instance,
regarding question a, if we wish to create an ontology for the use-case of U5 com-
prehension, this could result in a T9-T12 abstraction type module (see Figure 3.9).
Thereafter, for question b, if the module type is either one of T9-T12 abstraction,
the technique for modularisation is MT8 (manual methods); see Figure 3.10. Lastly,
for question ¢, when MTS8 manual methods are used, the resulting modules exhibit
the following annotation features: P1 (seed signature), P2 (information removal), P3
(abstraction), P3.1 (breadth abstraction), P3.2 (depth abstraction), P4 (refinement),
P5 (stand-alone), P6 (source ontology), P7 (proper subset), or P8 (imports) (see
Figure 3.11).

The dependencies between dimensions were identified by analysing the classifi-
cation table for modules (Table A in Appendix A), and drawing out dependencies
between dimensions. For instance, for the first entry in Table A, the use-case is UT:
Reuse and the type of module is M1: Ontology design pattern. This tells us that
ontology design pattern modules (type) are created for reuse (use-case). The ontology
design pattern modules (type) are created by MT8: manual modularity (technique).
Manual modularity (technique) could result in modules with P2: information re-
moval, P6: source ontology, P7: proper subset, and P8: imports (properties). The
links between the various dimensions are discussed in the following sections.

62

— Sublanguage
Expressiveness expressiveness
— Feature

expressiveness
— Optimal reasoning

Structural

Abstraction

— Subject domain
—Domain
coverage
Collaboration
— Axiom abs.

— Entity type abs.
— High-level abs.
— Weighted abs.

Maintenance
Validation

Figure 3.9: The dependencies between use-cases and module types; abs = abstraction,
ODP = ontology design pattern.

Structural

— Domain coverage
Structural)]— Ontology matching
— ODPs
Functional

— Subsect domain
— Privacy

— Subsect domain
— Isolation branch
— Locality

— Privacy

3.7.2.1 Dependencies between use-case and type

We examine the relationship between use-cases and types of module to determine
which types of modules the use-cases drives. The dependency relationship between
the use-cases and module types are displayed in Figure 3.9. When Ul (maintenance)
is the use-case, the resultant modules are T2 (subject-domain modules) or T6 (domain
coverage modules), hence, maintenance results in a type of functional or structural
module. For U2 (reasoning) the resultant module is T8 (optimal reasoning modules)
which is a type of structural module, or T13 (expressiveness sub-language) or T14
(expressiveness feature modules) which are both expressiveness modules.

The U3 (validation) use-case results in the same modules as the maintenance use-
case, i.e., T2 (subject-domain modules) or T6 (domain coverage modules). Hence,
validation results in a type of functional or structural module. When the use-case
is U4 (processing) the resultant module is T7 (ontology matching) or T8 (optimal
reasoning modules) which are both structural modules. For U5 (comprehension),
the resultant modules are either T9 (axiom abstraction), T10 (entity type abstrac-
tion), T11 (high-level abstraction) or T12 (weighted abstraction modules) which are
expressiveness type modules

For the U6 (collaboration) use-case, the resultant module is T2 (subject domain),
T5 (privacy), T6 (domain coverage), or T7 (ontology matching modules). T2 (subject
domain), and T5 (privacy modules) are a type of structural module. T6 (Domain
coverage), and T7 (ontology matching) are a type of functional module. For the
U7 (reuse) use-case, the resultant module is T1 (ontology design pattern), T2 (sub-
ject domain), T3 (isolation branch), T4 (locality), and T5 (privacy), which are all
functional type modules.

63

Functional

LEaatit Subject Isolation PHAE
y domain branch y

Manual

A

Sub-language Feature] Axiom Entity High-level | Weighted
expressiveness | expressiveness abs. | type abs. abs. abs.

Structural
Domain | Ontology | Optimal
Coverage | matching | reasoning

Graph Locality-
partitioning based

Expressiveness Abstraction

Figure 3.10: The dependencies between module types and techniques; abs = abstrac-
tion, ODP = ontology design pattern.

3.7.2.2 Dependencies between type and technique

Next, an ontology developer needs to know which technique to use for creating a type
of ontology module. The dependencies between the module types and techniques are
displayed in Figure 3.10. For T1 (an ontology design pattern module), both MT8
(manual) and MT7 (a prior:) methods are used. To create T3 (isolation branch), and
T5 (privacy modules), thus far there is only evidence of MT8 (manual methods) being
used. To create T2 (subject domain modules), when a large domain must be divided
according to specific subject domains, MT7 (a priori modularity) techniques are used.
For T4 (locality modules), naturally, MT4 (locality-based modularisation) approaches
are used. Therefore the three types of techniques used for creating structural modules.
in general are MT4 (locality), MT7 (a priori), and MT8 (manual) methods.

To create modules for T6 (domain coverage), or T7 (ontology matching), then
MT1 (graph partitioning) techniques are used. For T8 (optimal reasoning modules),
i.e., when an ontology is large and must be divided to assist with reasoning, then
MT4 (locality-based methods) is used. Thus, MT1 (graph partitioning) or MT4
(locality-based) methods are used to create structural modules. For all abstraction
and expressiveness modules, only manual methods are used.

3.7.2.3 Dependencies between technique and property

Next, we examine the properties exhibited by modules created with different tech-
niques. The dependency relationship between all these techniques and properties are
displayed in Figure 3.11. When MT1 (graph partitioning) techniques are employed,
the modules have the following properties: P2 (information removal), P5 (stand-
alone), P6 (source ontology), or P7 (proper subset). Since MT1 (graph partitioning)

64

Graph
partitioning

Locality-
based

Figure 3.11: The dependencies between techniques and properties. The shaded
hexagons represent the modification and relational properties, the unshaded represent
the set properties.

always results in a set of modules, there are set properties that exist, which are P9
(overlapping), P10 (mutual exclusion), P12 (partitioning), or P13 (inter-module in-
teraction). Using MT4 (locality methods) techniques results in modules with the fol-
lowing properties: P1 (seed signature), P2 (information removal), P5 (stand-alone),
P6 (source ontology), or P7 (proper subset). Since MT4 (locality methods) have
also been used to create a set of modules, its modules exhibit the set property P9
(overlapping).

Considering the results of the dimension, the experimental evaluation, and its
limitations, we now return to the answers for the questions posed in Section 3.6.

1. How do module types differ with respect to certain use-cases?
The manner in which a module use-case affects the type of module that will
be created is shown by the dependencies between the use-cases and types in
Figure 3.9.

2. Which techniques can we use to create modules of a certain type?
The manner in which a module type affects the technique that should be used
is shown by the dependencies between the type and technique in Figure 3.10.

3. Which techniques result in modules with certain annotation features?
The manner in which the module technique affects the annotation features that
it exhibits is shown by the dependencies between the module technique and
annotation features in Figure 3.11.

65

Overall, this is, to the best of our knowledge, the, thus far, most comprehensive list
of aspects of ontology modules and a first insight into the dependencies between all
those dimensions and criteria.

3.8 Evaluating the framework

We now evaluate the framework using existing ontologies and conceptual data models
as case-studies to demonstrate the usability of the framework.

3.8.1 Ontology case-studies

In this section, we test the framework to guide the modularisation process. We
randomly select four case studies of ontology modules. These modules were not from
the ‘training’ set of modules that were used in the experimental evaluation to create
the framework. We consider these modules as the ‘testing’ set of modules. Examples 3
to 5 were published in [86] and example 6 in [85]

Example 3 (QUDT ontology modules) The Quantities, Units, Dimensions and
Data Types (QUDT) ontologies are a set of ontology modules focussed on terminology
used in science and engineering for representing physical quantities, units of measure,
and their dimensions [63].

Use-case Identify the use-case for the modularity of the set of ontologies. In the
set of seven QUDT modules, there is a total of 4067 entities; hence it is a
large domain and is divided into several modules to facilitate maintenance and
validation. One of the goals outlined in the QUDT specification states that parts
of the vocabulary will be of interest to certain users or applications depending
on the use-case. Hence the individual modules in the set could be used for reuse.
Lastly, the modular approach of the subject domain means that a team of experts
could work with specific modules thereby enabling collaborative efforts. Hence
the four use-cases for the QUDT ontology modules are maintenance, validation,
reuse, and collaborative efforts.

Type Since the use-case(s) have been identified, we can now refer to the framework

"~ to check for the next step of the modularisation process. The framework states
that use-cases result in module types. According to the dependencies, when
maintenance or validation is the use-case, this results in subject-domain or do-
main coverage modules. Collaborative efforts result in subject domain, privacy,
domain coverage, or ontology matching modules. For reuse, the resulting mod-
ule(s) is ontology design pattern, subject domain, isolation branch, locality or
privacy modules. Across all four use-case to type dependencies, the common
module type that maintenance, validation, collaborative efforts, and reuse result
in is the subject domain modules. Hence the set of QUDT modules is a set of
subject domain modules, whereby a large ontology is divided according to the
subject domains within the ontology.

66

Stand-alone

Pre-assigned
number of
modules

Maintenance ; Subject
. Collaboration domj i

Overlapping

Figure 3.12: The dependencies between the module dimensions for QUDT modules.

Technique The type of module drives the modularisation technique. Given that the
module is a subject domain module, according to the framework, such modules
are created using the a priori technique. Hence, the modules to be created are
decided at the onset of ontology development. There is no source ontology for
QUDT containing the entire domain, there is only a set of modules hence we
can assume that a modular approach was decided at the onset of ontology devel-
opment.

Property By using an a priori technique, which module properties can we expect of the
QUDT set of modules? The framework states that a priori techniques result in
modules each with the stand-alone or imports properties, and as a set of modules,
they exhibit the overlapping or pre-assigned number of modules properties. Two
of the QUDT modules exhibit the stand-alone property only. The remaining siz
modules each exhibit the imports property only. As a set of modules, the modules
exhibit the following set properties: overlapping and pre-assigned number of
modules.

A summary of the case-study for the QUDT modules is shown in Fig. 3.12.

Example 4 (Foundational Model of Anatomy module) The Foundational Model

of Anatomy Ontology (FMA) is a reference ontology for the domain of human anatomy
[133].

Use-case We wish to create a module with a small selection of knowledge from the
FMA ontology, particularly to be reused in the creation of an ontology about
infection. For our proposed ontology about infection, we require all the infor-
mation about body substances from the FMA ontology to be reused.

Type Given that the identified use-case for the module is reuse, we refer to the frame-

~ work to check which type of modules result from reuse. The reuse technique
results in all the functional module types: ontology design pattern, subject do-
main modules, isolation branch, locality, and privacy modules. Since we wish
to extract a subset of the FMA ontology, we consider the creation of either an
1solation branch module or a locality module. Looking at the entities about body
substances in the FMA ontology, we realise that we do not wish to preserve enti-
ties with weak dependencies or relations to the body substances entities. Hence,
we decide to create an isolation branch type module.

67

Technique For the isolation branch type module, the only technique that can be used
to create such a module is manual methods. To create a branch module of body
substances from the FMA ontology, we delete all entities besides the tazonomic
branches referring to body substances entities.

Property The framework states that when manual methods are used, the resulting
module could have the following properties: seed signature, information re-
moval, abstraction, breadth abstraction, depth abstraction, refinement, stand-
alone, source ontology, proper subset, or imports. The FMA body substances
module exhibits the following properties: seed signature, information removal,
stand-alone, source ontology, and proper subset.

Example 5 (OpenGalen EL module) The OpenGalen ontology [128] is a com-
mon reference module for application-independent and language-independent model
of medical concepts.

Use-case ELK [7}] is a reasoner for the lightweight ontology language OWL EL cre-
ated for improved reasoning for large ontologies. A study on the evaluation of
the ELK reasoner requires modules for the use-case of reasoning.

Type Since the use-case is reasoning, this could result in the following types: optimal

~ reasoning modules, expressiveness sub-language or expressiveness feature mod-
ules. In order to test out the ELK reasoner, the development team created an
EL version of the OpenGalen ontology*. Hence the module type is an expres-
siweness sub-language module. The EL version of the OpenGalen ontology was
created by removing all inverse role, functional role, and role chain axiom of
the OpenGalen ontology.

Technique Thus far, the technique used for creating expressiveness sub-language mod-
ules is manual methods. The study on the evaluation of the ELK reasoner
states that an EL version of the OpenGalen ontology was created by removing
InverseObjectProperties and FunctionalObjectProperties azioms, hence we can as-
sume that manual methods were used for this.

Property The framework states that when manual methods are used, the resulting
module could have the following properties: seed signature, information re-
moval, abstraction, breadth abstraction, depth abstraction, refinement, stand-
alone, source ontology, proper subset, or imports. The OpenGalen EL module
exhibits the following properties: information remowval, stand-alone, source on-
tology, and proper subset.

Example 6 (Symptom ontology) Let us assume that we wish to reuse the Symp-
tom ontology [6], a domain ontology about symptoms and signs of diseases.

4nttp://code.google.com/p/elk-reasoner/wiki/TestOntologies last accessed: 20
June 2017.

68

Use-case We wish to create a module with knowledge about symptoms that exist on
the skin in order to reuse it in a larger domain ontology about dermatology.

Type We now refer to the framework to check which type of modules result from reuse.

~ Reuse results in all subtypes of functional modules. Since we wish to extract a
subset of the Symptom ontology, we consider an isolation branch or locality
module. We wish to preserve all entities with dependencies to the skin entities;
hence we create a locality module.

Technique For the locality module, a locality-based technique is selected, using the
OWL Module extractor tool to extract a module containing knowledge about the
skin symptoms, with a seed signature skin and integumentary tissue symptom.

Property Modules created with locality-based techniques could have these properties:
information removal, seed signature, source ontology, proper subset, stand-alone,
and overlapping. The generated module exhibits all these properties, except over-
lapping (since it is not a set).

3.8.2 Conceptual data model case-studies

We now assess whether the framework has any transferability, for the usage of con-
ceptual data models where a modular approach is taken. This work was published in
[90]. We analysed 15 conceptual data models that exist as a set of modules to uncover
information about them using the framework for modularity from Section 3.7. Six of
these data models were from existing student projects at the Universidad Nacional
del Sur (UNS) where for each model, a few modules were linked using the CASE tool,
ICOM [40]. For the six ICOM projects, some of them are cognitive overload scenarios
as they are large models that have been designed as modules with links among them
to deal with managing a large amount of knowledge and others are integration scenar-
ios where heterogeneous models have been combined with inter-model links. These
models cover domains about telecommunications, college, governance, etc. The re-
maining nine data models were cases where we used publicly available data models in
different conceptual data models (UML, ER, and ORM) and integrated them; they
are all classified as integration scenarios. These models cover domains about bank-
ing, car sales, flights, etc. The test files for the models and analysis are available at
http://www.meteck.org/SAAR.html.

An example of a cognitive overload scenario is shown in Fig. 3.13, where a mod-
ule with information about governance has links to a module about memorandums.
An example of an integration scenario where we manually aligned models is shown
in Fig. 3.14. The solid lines link entities of the same type, e.g., the object types
er:Airplane and uml:Aircraft, the long-dashes dashed lines links entities that are se-
mantically very similar (e.g., a full attribute, as in uml:Airport.name and an at-
tribute without data type, er:Airport.name), and the short-dashes dashed line re-
quired some transformation, such as between er:Airplane. Type (an attribute) and
uml:Aircraft_Type (a class) and between er:Airport.Code (an identifier, without data
type) and uml:Airport.ID (a plain attribute, with data type).

69

[GCIO [= [@ [| O Memorandum1129 [= @ [

£

X

ment
:
B ofagnaPa

PlanToRedorm edesallT

TermnatngTroubiedPropects

dems

Figure 3.13: A cognitive overload scenario: a conceptual data model on the gover-
nance domain with intermodel assertions between modules.

We used the framework for modularity from Section 3.7 to classify the projects.
Little was known about the use-cases for the conceptual data models, so we began
by mapping each model to a type, by definition. For this, all the models of the cog-
nitive overload scenario are T2: subject domain modules, i.e., they are created when
an ontology is subdivided according to the subject domains present in the ontology.
According to the framework, the use-cases for such modules are maintenance, valida-
tion, collaborative efforts, and reuse (see Figure 3.9). As for the technique for subject
domain modules, an a priori technique is usually used, one in which the modules
of the domain is decided at the onset of development (see Figure 3.10). Lastly, the
properties that are linked to the set of modules created by the a prior: technique
could be pre-assigned number of modules or overlapping. The properties linked to a
single module created by the a priori technique could be stand-alone or imports (see
Figure 3.11).

For the modules on system integration, they correspond to T11: high-level ab-
straction modules of the framework, i.e., for when there is a module in the system
where only higher-level classes of the ontology are required, and this decreases the
vertical structure of the ontology. According to the framework, such modules have
a use-case of comprehension and a technique of manual modularity. The properties
for modules created by manual modularity techniques are: source ontology, proper
subset, and depth abstraction. The full classification according to the use-case, type,
technique, and property is shown in Table 3.2.

By using the framework, the conceptual data model developer can gain more in-
sight about their conceptual data models. One can check which type of module a data
model is classified as, the use-cases for creating such modules, and the techniques that

70

Figure 3.14: An integration scenario: The intermodel assertions between Flights
models in EER and UML. The solid lines link entities of the same type, the long-
dashes dashed lines links entities that are semantically very similar, the short-dashes
dashed line required some transformation.

are used to create such conceptual data model modules. Furthermore, the framework
provides the developer with information about the properties that their data models
ought to exhibit. For future cases where a conceptual data model needs to be created,
the framework can be used to guide the modularisation process for the conceptual
data models. This can be achieved by referring to the framework to check which com-
bination of technique results from the use-case of the module (Figures 3.9) to give a
developer insight on how to modularise. Thereafter, the developer can check the other
dependency diagrams of the framework (Figures 3.10- 3.11) to uncover information
about the type and properties of the modules.

3.9 Discussion

Following the inconsistencies and gaps from current modularity definitions first intro-
duced in Chapter 2, we created our own definition for a module. The dimensions that
were defined and populated in this Chapter are used towards creating a framework
for modularity. To create a framework, we had to perform an experiment whereby we
collected and classified a set of ontology modules using the dimensions. A limitation
of the method used in the classification experiment is that more subdimensions may
appear in the future as ontology engineering progresses. For instance, new types of

71

Table 3.2: Classifying the conceptual data model projects using the framework for
modularity.

Use-case Type Technique | Property
o Maintenance Pre-assigned
Cognitive —
Validation . . . no. of modules
overload . Subject domain | A priori
rojects Collaboration Overlappin
proj Reuso pping
. . Source model
Integration . High-level Manual
i Comprehension . . Proper subset
projects abstraction modularity
Depth
abstraction

modules are found to be needed as the use of ontologies expands into more application
areas. To address this, we propose that the dimensions be periodically updated as
required.

A framework for modularity assists the ontology developer in providing guidance
for the modularisation process. Questions that an ontology developer might have
before attempting the modularisation process include, “which tool could I use to per-
form modularity”, or “what properties should my module exhibit”. This can now be
looked up using the novel, empirically-based, evaluated framework for modularisa-
tion. The framework comprises four of the five dimensions: use-case, technique, type,
and properties.

The framework for modularity was created using grounded theory as a research
method. While grounded theory is beneficial as it allows us to tackle the problem
with an open-mind and use real-life data, there is also a drawback. It relies heavily
on empirical data, without having an initial hypothesis to test. This opens up the
possibility for biased data. To resolve this issue, we have included diverse data:
various modules from different sources representing different domains, and some that
were generated with modularisation tools.

In addition to assisting with guiding the entire modularisation process, the prop-
erties of modules can be used for ontology annotation towards improved metadata.
Metadata promotes ontology discovery and reuse, and repositories such as BioPor-
tal [163], Ontohub [107], and ROMULUS [80] use metadata models. There is limited
metadata concerning modular ontologies [80], which now can be refined and improved
further. If a module is not annotated with some properties, it will indeed be difficult to
figure out its properties, but, in theory, at least, it may be possible to determine them
when either the source ontology or the other modules in the set are known. Thus the
resultant framework of the module dimensions and dependencies can be used to steer
the modularisation process, and form the basis for metadata for ontology modules,
which promotes ontology reuse.

The classification of modules according to techniques reveals that there is a heavy
reliance on using manual methods for module creation. Thus, the problem, that
there are insufficient tools for modularisation still exists, but the classification of
modules using the dimensions from this Chapter has refined it as follows. The clas-

72

sification reveals that for 9 out of the 14 module types, manual methods were used
for module creation. For creating ontology design patterns, isolation branch, pri-
vacy, sub-language expressiveness, feature expressiveness, axiom abstraction, entity
type abstraction, high-level abstraction, and weighted abstraction modules, manual
methods are used. We now have a list of the type of modules that rely heavily on
manual methods. The implementation of tool-based methods as a technique for some
of the abstraction and expressiveness type modules is within reach, given the recent
advancements in ontology API libraries such as the OWL API [69].

For the tools that are available, they are not sufficient. They are hardly maintained
and sometimes not usable. We had hoped to generate modules from partitioning
large ontologies. However, the SWOOP partitioning tool could not be applied for
large ontologies such as the FMA ontology [133] as it could not open it, despite
manually changing the java heap space parameters. We had also hoped use PROMPT
traversal views with Protégé [114] for query-based modularity, but it malfunctioned
and returned a null pointer exception. OWL module extractor was considered for
extracting DMOP modules. It extracts modules by using an input set of terms as a
signature while ensuring the logical completeness of the module. This means that for
every axiom of the original ontology, the meaning of the axiom is preserved in the
module. Due to dependencies between entities in the DMOP ontology and the logical
completeness constraint, OWL module extractor generated too large a module to use
to improve reasoning.

An evaluation of the framework with ontology scenarios proves that the frame-
work is indeed useful and worthwhile for module development. The example of the
application of the framework to the QUDT, FMA, OpenGalen, and Symptom ontol-
ogy module extraction demonstrate that the framework is promising for guiding the
modularisation process. The framework provided guidance in classifying the module
according to its type, which technique to use for modularity, and in addition, which
annotation features the module should exhibit.

Using conceptual data models for the evaluation demonstrate the transferabil-
ity of the use-case from ontologies to conceptual data models, and how important
information about conceptual data models can be uncovered.

3.10 Conclusion

In this chapter we identified, discussed, and populated dimensions to demonstrate
that modularity is not a straightforward, solitary concept but rather a methodological
approach with specific conditions resulting in different ontology modules.

We have identified issues and questions concerning modularity. The issues are
that there is difficulty in selecting the appropriate modularity technique, insufficient
modularity tools for applications, and it is not clear which technique should be ap-
plied for which scenario. To address them, we identified and populated dimensions
concerning modularity which was used in an experimental evaluation with a set of 189
ontology modules resulting in dependencies among the modularity dimensions. The
classification of the modules using the dimensions led to the creation of a framework

73

for ontology modularity which can be used to solve the developer’s issue concern-
ing modularity technique selection, to refine the issue concerning insufficient tools
for modularisation, and to systematically guide the entire modularisation process.
The examples of the application of the framework to the various ontology module
extraction and conceptual data model use-cases demonstrate that the framework is
promising for guiding the modularisation process.

74

Chapter 4

Theories and techniques for
modularitsation

In this Chapter, we present theories and techniques for modularity. We begin the
chapter with an experiment to gain insight into the current state of the art con-
cerning modularisation in Section 4.1. The problems uncovered in Section 4.1 led us
to an investigation of ontology metrics, and we present work on evaluation metrics
and the Tool for Ontology Module Metrics (TOMM) in Section 4.2. We identified
existing metrics and created new ones which are then implemented into the TOMM
tool to measure the quality of a module. We performed an experimental evaluation
with TOMM to gain insight about evaluation metrics for ontology modules. The
experiment, with ontology modules, reveals for which type of module, which metrics
are relevant and their expected values, therefore, it can solve the problem that it is
unclear whether a module is of good or bad quality. In Section 4.3, we investigate
ontology interchangeability and introduce SUGOI, a tool that has been designed to
interchange modules for promoting semantic interoperability and improving modu-
larisation metrics. Thereafter we investigate techniques for automatically performing
ontology modularisation in Section 4.4. We present five new algorithms for perform-
ing modularisation and show how these algorithms work with illustrative examples.
The algorithms were implemented in the Novel Ontology Modularisation SoftwAre
(NOMSA) tool and compared to other modularisation tools where it was found that
for most of the features, NOMSA performs as well as or better than the other tools,
with the benefit of full automation of the process. The NOMSA tool was also ex-
perimentally evaluated with a set of ontologies. We discuss our contributions in
Section 4.5 and conclude the Chapter in Section 4.6.

4.1 Issues with modularisation with existing re-
sources

The aim of this exploratory experiment is to gain better insight into the current
state of the art practically and in particular, the problems that an ontology developer
encounters when attempting to perform modularisation using existing resources. We

1)

assess this by means of two case-studies.

4.1.1 Case-study: ROMULUS’s modules

The intent behind the Repository of Ontologies for MULtiple USes (ROMULUS), was
to have an online library of machine-processable, aligned, merged, and modularised,
systematically related foundational ontologies [88]. In earlier work [88], modules were
created within ROMULUS to facilitate foundational ontology reuse. We now revisit
this modularisation process to investigate the problems with existing resources. The
following modules have been created in ROMULUS:

e DOLCE modules:

— DOLCE-Endurants, DOLCE-Perdurants and DOLCENoQuality AndQualia:
These modules contain only a ‘branch’ of existing entities from the original
ontologies; e.g., the DOLCE endurant entity branch and all its subclasses.

— DOLCE-EL and DOLCE-QL: These modules are trimmed to what can be
represented in OWL 2 EL and OWL 2 QL.

e BFFO modules:

— BFO-Continuants and BFO-Occurrents: These modules contain only a
‘branch’ of existing entities from the original ontologies; e.g., the BFO
Continuant entity branch and all its subclasses.

— BFO-EL-QL-RL: These modules are trimmed to what can be represented
in OWL 2 EL, OWL 2 QL and OWL 2 RL.

e GFO modules:

— GFO-NoOccurrents and GFO-NoPersistantsAndPresentials: These mod-
ules contain only a ‘branch’ of existing entities from the original ontologies;
e.g., the GFO ontology with the Occurents and subclass entity branches
removed.

— GFO-Basic-EL and GFO-Basic-QL: These modules are trimmed to what
can be represented in OWL 2 EL and OWL 2 QL.

— GFO-ATO (based on the Abstract Top Level layer) and GFO-ACO (based
on the Abstract Core Level): These modules contain the high-level meta-
categories of GFO.

The following tools were considered for modularisation: Swoop v2.3 [73], OWL
module extractor [30], and Protégé v4.3 [110]. They were considered to create the
branch type taxonomic modules, the trimmed down language versions, and the ab-
stract level modules. It was found that all three tools created modules that were too
large; they contained too much data and were too similar to the original ontologies;
this is explained in the remainder of this section. For BFO, in an attempt to create

76

a module with only an Occurrent entity branch, both Swoop and OWL module ex-
tractor generated modules that were 92% of the size of the original BFO ontology,
while Protégé generated a module that was 97% of the original BFO ontology. For
modularising DOLCE and GFO, it could not be done because all three tools created
modules with entities that were not to be included in the branch. For instance, the
DOLCE-endurants module was supposed to only contain a taxonomy of endurant
entities, but it still contained entities from the perdurant branch. This is due to
the fact that the tools preserve the local completeness of the modules thanks to the
relationships between the endurant and perdurant branch entities in DOLCE. The
consequences of these sub-optimal results with existing tools meant that the resul-
tant modules of ROMULUS have been created manually. The relative percentage
reduction of a module that was identified for these modules could be an interesting
metric for measuring the quality of a module and deems further investigation in the
following section.

Additional data pertaining to foundational ontologies are required to assist on-
tology developers with reusing an ontology effectively. Metadata values for all on-
tologies, including the modules are provided in ROMULUS. ROMULUS uses a few
entities from existing metadata models, OMV [59] and OM?R [153], but extends this
considerably with its own metadata for ontology modules. The retrieval of some of
the metadata for ROMULUS’s modules is a tedious task that requires manual cal-
culations. There is currently no software tool available to assist with the automatic
generation of such metadata for modules. The list of metadata pertaining to modules
is provided here:

e ModuleType: This is used to classify a module into a broad type.
e ModuleSubtype: This is used to classify a module into a more specific subtype.

e ModuleCoverage: This represents the value of the ontology that is covered by
the module; the percentage of the original ontology that is found in the module
e.g., a module that covers 50% of the original ontology.

e ModuleCorrectness: This states whether the module is logically correct, i.e., if
all the axioms from only the original ontology are found in the modules, and
nothing new has been added to the module.

e ModuleCompleteness: This states whether, for every axiom in the original on-
tology, the meaning of the axiom is preserved in the module.

e ModuleClassSize: This represents the value of the classes of the original ontology
has been contained in the module.

e ModulePropertiesSize: This represents the value of the properties of the original
ontology has been contained in the module.

e ModularisedAxiomSize: This is used to describe the value of the axioms of the
original ontology has been contained in the module.

7

Metadata: DOLCE-Endurants

Entity Value

Module details

Module Type Reusable component

Module Subtype Branch

Module Type Description This module covers a single branch of the original
ontology

Module Coverage 91.69%

Module Correctness Yes

{ModuieCarrectness states whether a nodule is |

.. if all the axioms from only the original

antolagy are found in the medules and nothing n 2en added to the module.)

Module Completeness No

{ModuieCompieteness states whether for every axiom in the original ontology. the meaning of the axiom is

persevered in the module.)

Module Class Size 31.08%

{ModularisedClassSize represents the amount of classes of the original ontology that remains in the module.}

Module Property Size 100.00%

(ModularisedPropertySize represents the amount of properties of the original entology that remains in the

madule.)

Module Method Manual

Original ontology A Descriptive Ontology for Linguistic and Cognitive

Engineering (Lite)

Figure 4.1: The metadata pertaining to module details from the DOLCE-Endurants
module in ROMULUS.

The metadata with corresponding values for the module details for the DOLCE-
endurants module is shown in Figure 4.1. For each module in ROMULUS, the ontol-
ogy developer needs to identify metadata values from each ontology file. This task
requires computations from each ontology file which is a manual process. For in-
stance, a user needs to check whether, for every axiom in the original ontology, its
meaning is preserved in the resultant module, in order to get the metadata value for
the ModuleCompleteness metadata. We also note that other metadata values, such
as the ModuleType and ModuleSubtype correspond to the type dimension of the
ontology modularity framework presented in Section 3.7 and can be easily extracted
from the framework for a particular module.

4.1.2 Case-study: Modularising the DMOP ontology

The work in this section has already been published in [78]. In an attempt to improve
reasoning performance for the Data Mining and Optimization Ontology (DMOP),
we attempted to modularise DMOP ontology using the following automated tools:
SWOOP v2.3 [73], OWL Module Extractor [30], and Protégé v4.3 [110]. The locality-
based algorithms of SWOOP and OWL Module extractor were experimented with,
but they created modules that were too large because entities within the DMOP
ontology have many dependencies between them; there were no isolated branches
of the ontology that could be modularised. Recall in Section 4.1.1, the DOLCE

78

ontology could not be modularised for branch modules because of relations between
the endurant and perdurant entities. This occurs in the DMOP ontology because it
is merged with the DOLCE ontology. The partitioning feature of SWOOP could not
be used either as it does not support ontologies that have imports to other ontologies
that exist in the DMOP ontology.

We use the ‘axioms by reference’ method in Protégé to select entities from an
ontology to copy, move, or delete. The copy and move function returned an error,
therefore we used the delete option to remove unwanted entities from the module.
We used the ‘axioms by profile’” method in Protégé to create an OWL EL profile of
the DMOP ontology and we also merged the axioms of the branch modules to create
a merged module. The resultant modules are as follows:

e DMOP-Branch-Endurant: A module of wholly-present entities.
o DMOP-Branch-Perdurant: A module of entities that unfold in time.

e DMOP-Branch-Abstract-Quality: A module of entities that exist in neither
space nor time and property related entities.

DMOP-Branch-Toplevel: A module that has only DMOP’s top-level entities.

DMOP-Branch-Merge: A merged module of the branch modules of DMOP.
e DMOP-Profile-EL: An OWL EL profile module of the DMOP ontology.

Table 4.1 displays a comparison of the size metrics for the DMOP modules. Note
that merging the branches does not result in the original ontology, as can be observed
from the difference in number of axioms in the merged ontology compared to the orig-
inal DMOP. So if ontology developers were to independently work on the different
modules for a collaboration with the hope of re-merging the modules to achieve the
original ontology afterwards, it is not possible. It is apparent that the module extrac-
tion feature in Protégé extracts classes in isolation and includes the object properties,
data properties, and individuals of the original ontology, including those that do not
relate to the classes in the module. For instance, in the DMOP-Branch-Perdurant.owl
module, the object property, solves exists. This has no dependencies to the classes
in the module and should not be present.

4.1.3 Problems with existing modularisation resources

Attempting to modularise the set of ROMULUS foundational ontologies and the
DMOP ontology with existing tools resulted in a number of problems. Existing tools
such as Swoop and OWL module extractor resulted in modules that were too large
with unnecessary entities that were preserved in the modules due to the underly-
ing logical principals that the tools met such as local completeness and correctness.
Protégé generated suitable modules, but there were slight operational problems with
the tool which could be overcome by using the ‘delete’ option instead of the ‘copy’
option. While the sizes of the modules were suitable in Protégé, it did not consider

79

Table 4.1: Size metrics for DMOP and its related modules; OP = object property,
dp = data property, and ind = individual.

Ontology |Class| | |OP| | |IDP| | |Ind| | |Axiom]|
DMOP.owl 758 169 15 459 4584
DMOP-profile-EL.owl 758 169 15 459 4214
DMOP-branch-Endurant.owl 512 169 15 459 3409
DMOP-branch-Perdurant.owl 19 169 15 459 1376
DMOP-branch-Abstract-Quality.owl | 231 169 15 459 2131
DMOP-branch-Toplevel.owl 44 169 15 459 1428
DMOP-branch-Merge.owl 758 169 15 459 4359

the entities in relation to each other, i.e., it extracts a class in isolation without con-
sidering its related object or data properties. Next, there is the problem of identifying
useful metadata for modules. Modules are to be annotated with useful metadata to
promote module reuse. However, for the modules in ROMULUS repository, values
such as ModuleCompleteness and ModuleCoverage have to be manually calculated
from each ontology module file. This is a time-consuming and tedious process. Fur-
thermore, there is no systematic way of classifying these modules into a ModuleType
and ModuleSubtype for those metadata values.

The modularity tools could be improved by taking into consideration the following:

e Considering all the different types of entities (classes, object properties, data
properties, and individuals) that are dependent on a selected entity, and not
just the selected entity in isolation.

e By relaxing on logical principles such as completeness and correctness to allow
for the creation of smaller modules.

e By employing other modularisation techniques besides locality-based, graph
partitioning, and language-based techniques.

e By having functionality for calculating values for annotating modules with use-
ful metadata.

4.2 Evaluation metrics for modules

A number of techniques for ontology modularisation have been proposed in recent
years, such as traversal methods [113], locality-based extraction [30], and partition-
ing [31, 35]. There also have been attempts at analysing which types of modules
exist [20], and in Section 3.7.2, we determined which types of modules are useful for
which purpose, such as that high-level abstraction modules are used for comprehen-
sion. There is, however, a disconnect between the two. For instance, if an ontology
developer wants to reuse, say, only the branch of the ‘Space’ entities from the GFO
module for another ontology of Spatial objects, then how does the developer know

80

that the module extracted from GFO is a good module? Therefore it is unclear how
the quality of an ontology module could be measured. While there are few studies
on evaluation ontology modules, they focus on a few of the metrics, such as size, co-
hesion, coupling, correctness, and completeness [124, 137, 164], and these metrics are
not comprehensive enough to apply to the variety of types of modules that exist. For
instance, for most of the modules that were to be generated for our two case-studies
in Section 4.1, they cannot be evaluated with logical criteria such as completeness
and correctness. Another problem concerning the evaluation metrics is that while
many of them are described in several works, there is no formula designed to measure
them. For instance, intra-module distance, to measure the distance between entities
in a module.

One of the dimensions for modularity identified in Section 2.2 was the evaluation
metrics, or how to measure the module. It is necessary to evaluate the ontology mod-
ularisation techniques, in terms of the quality of the generated module to determine
whether a module is of good or bad quality and appropriate for a use-case. Existing
studies [34, 35, 137] mention a number of techniques such as size, logical correctness,
and cohesion. The evaluation metrics dimension was not included with the other
dimensions in the creation of the framework for modularity as it required additional
work in another direction in addition to the classification of modules performed in
Section 3.6. For evaluation metrics, an investigation needs to be performed on the
quality of ontology modules. For this we require a software tool which includes all
the metrics for modules to automatically compute them for an ontology module as
some cannot be manually computed, and we need to perform an experimental evalu-
ation to determine which metric values correspond to which module types, i.e., how
to measure if a module is of good quality.

In this section, we review and formulate existing evaluation criteria, identify new
evaluation criteria, and categorise all the evaluation criteria. The evaluation metrics
for modularity was compiled by studying existing literature on modularity. This
resulted in 13 metrics from the literature, of which seven were short of a metric for
quantitative evaluation that have now been devised (indicated with an asterisk), and
three new ones have been added (indicated with a double asterisk). Earlier versions
of this work on evaluation metrics has been published [82] and [87].

4.2.1 Structural criteria

Structural criteria are calculated based on the structural and hierarchical properties
of the module. These criteria are calculated by inspecting the syntax of the ontology.
It is usually based on counting components of the ontology such as axioms, entities,
etc., and is thus a numerical value. Calculating structural criteria involves evaluating
the size, relations, and placement of entities within a module. It has an impact on
the maintenance, reasoning, and efficiency of the module. For maintenance, criteria
such as size and relative size, which is discussed in the remainder of the section, can
be used to give ontology developers an idea of the amount of maintenance that will
need to be performed on the module in comparison to the original ontology. Smaller
ontology modules might require less maintenance. For reasoning, criteria such as

81

atomic size, which measures the interdependent axioms in an ontology could give an
indication of whether reasoning could be improved thanks to modularisation.

EM1: Size Size is a fairly common metric as a modularity evaluation criterion
mentioned by several existing works [118, 34, 137, 35, 124]. Size refers to the number
of entities in a module, |M|. This can be further subdivided into the number of
classes |C|, number of object properties |OP|, number of data properties |DP|, and
number of individuals ||. In addition to giving the ontology developer an indication
of how small or large the module is, size is also important as it is used to calculate
other structural criteria which is discussed in the remainder of the section.

Size(M) = |M| = |C| + |OP| + |DP| + |1]. (4.1)

EM2: Relative size** We define relative size as the size of the module, i.e., the
number of classes, properties and individuals compared to the original ontology. The
relative size of a module strongly influences the result of the module on tasks such
as reasoning and maintenance for if the module extracted is nearly the same as the
original one, then not substantial optimisation will be obtained. To compute this, we
have created an equation to calculate the relative size of an ontology module M as

follows.
[M]

|0

where |M] is the size of the module and |O] is the size of the ontology as described
in EM1.

Relative size = (4.2)

Example 7 The GFO-Basic ontology module contains 47 classes, 0 individuals, 41
object properties, and 0 data properties. The source ontology, GFO, contains 78

classes, 0 individuals, 67 object properties, and 0 data properties. Hence the relative

o ATHO+4140 _
S12€ 1S 750 Terr0 = 0.61%.

EM3: Appropriateness of module size The appropriateness can be specified
by mapping the size of an ontology module to some appropriateness values. Schlicht
and Stuckenschmidt [137] propose an appropriate function to measure this, which
ranges between 0 and 1, where a module with an optimal size has a value of 1. The
function they propose is based on software design principles: since the optimal size of
software modules is between 200-300 logical lines of software code, an axiom value of
250 would be the optimal size for an ontology, restricting the module to be between
0 and 500 axioms. The appropriateness equation is defined as follows [137].

1 1
Appropriate(x) = 5 5005(3:.27%) (4.3)

where x is the number of axioms in the module.

Example 8 The Temporal Relations module of the ExtendedDnS descriptions and
1

situations ontology has 435 axioms. Therefore, its appropriate size value is 5 —

82

5003(435.2%) = 0.16. The appropriate size value of the Temporal Relations mod-
ule is rather low, due to the fact that the module has many more axioms than the

optimal of 250 as defined by Schlicht and Stuckenschmidt.

EM4: Atomic Size** The notion of atoms within ontology modules was first
introduced by Del Vescovo et al. [156] in a study of BioPortal repository ontologies
[163]. An atom is a group of axioms within an ontology that have dependencies
between each other. Based on the findings from the study [163], that it is possible
to modularise an ontology using atomic decomposition as a method, we propose
to measure the size of atoms in ontologies. We can gain insight on whether an
ontology may be easily decomposed using logical modularisation methods. We define
the atomic size as the average size of a group of inter-dependent axioms in a module.
We formulate an equation to measure the atomic size of a module by using the number
of atoms and number of axioms present in the module.

| Aziom|

Atomic Size(M) = tom]
om

(4.4)

Example 9 Consider the example in the screenshot (Figure 4.2) of an atomic de-
composition [157]. The number of atoms in the example is 6 and there are 7 azioms
in total. The atomic size is hence % = 1.17. This tells us that there is an average of
1.17 azioms per atom for the example.

(ag)
. NS
a1 = ‘Animal C (= lhasGender.T)’, - B i
=" i (= 1 ! I \._ I/ . \‘ F
a2 = ‘Animal C (= lha.?HabJ.tat.T) : (as) (a1) (as)
a3 = ‘Person T Animal’, 1\‘/\
a4 = ‘Vegan = Person 1 Veats.(Vegetable || Mushroom)’, (a2)
as = ‘TeeTotaller = Person[1Vdrinks.NonAlcoholicThing’, 1
as = ‘Student C Person 1 JhasHabitat.University’, \’61)

a7 = ‘GraduateStudent = Student I JhasDegree.{BA, BS}’
Here the |-atoms in the AD contain the following axioms respectively: a; =

{051._052}, s = {Qg}, g = {0:4}, a4 = {C\:a}, 5 = {QG}} g — {0-7}.

Figure 4.2: An ontology’s atomic decomposition. See example 9 for details. Source:
[157].

EMS5: Intra-module distance* d’Aquin et al. define the intra-module distance
in a module as the distance between entities in a module [35]. It is calculated by
counting the number of relations in the shortest path from one entity to the other,
for every entity in the module.

Based on this definition, we formulate an equation to measure the intra-module
distance of a module that considers the distance between an entity to another in terms
of shortest-path relations. For measuring this distance, we use Freeman’s Farness

83

value [43]. In the field of network centrality, Freeman’s Farness value of a node is
described as the sum of its distances to all other nodes in the network.

Intra-module distance(M) = Z Farness(i) (4.5)

where n is the number of nodes in the module, and Freeman’s Farness value is defined
as follows:

n
Farness(i) = Z distance;; (4.6)
J
where ¢ and j are two entities in the module.
The intra-module distance criterion is used in the calculation of the relative intra-
module distance criterion which is described in the following section.

Example 10 Consider the graphical notation of the source ontology in Figure 4.5.
We only consider the distances between entities A, B, C, D, E, for the source ontology
since those exist in the resulting module. We calculate the farness value for each node
in the ontology as displayed in Table 4.2. As observed, the Farness for entity A in
ontology O, Farness(A) is 1, 1, 4, and 4 between entities B, C, D, and E respectively.
The values are all aggregated to calculate the intra-module distance of the ontology.
Finally, the intra-module distance value for the ontology O = 32. Similarly, the intra-
module distance for the module M is 16.

Source Ontology, O ' D ‘
BN |

NOOF G

A =

C

Module, M ' B | D
A E

Figure 4.3: A source ontology and corresponding module for which we calculate intra-
module distance. The arrows between the entities indicate the shortest-path relation
between them.

EMG6: Relative Intra-module distance** We define the relative intra-module
distance of a module as the difference between distances of entities in a module M
to a source ontology O. This difference would reveal if the overall distance between

84

Table 4.2: The farness values for each entity of the source ontology and corresponding
module. See example 10 and Figure 4.3

Farness, O Farness, M
A/B|C|D|E Sum A/B|C|D|E Sum
Al- 11|14 |4 10 Al- |1 |12 |2 6
B|1]|- 10133 7 B(1 |- (0|1 |1 3
C|1]0]- 1010 1 C|l1 |0 |- (010 1
D4]|3]0]- 10 D2 |1 /0 |- 10 3
E|4(3]0]0 |- 7 E|{2 |10 |0 |- 3
| Intra-module distance(O) = | 32 | Intra-module distance(M) =16 |

the entities in the module has been reduced, and by how many distance units. This
is useful in comparing the difference in module size; whether the technique reduces
the size considerably. To compare the distances of the original ontology, we compute
the farness values for the subset of nodes that exist in a module, which is used to
calculate the intra-module distance of the original ontology, and is defined as follows:

Intra-module distance(O)
Intra-module distance(M)

(4.7)

Relative intra-module distance(M) =

Example 11 Recall in example 10, we calculated the intra-module distance of the
source ontology O to be 32 and of the module M to be 16 (see Table 4.2). The relative
intra-module distance is 32 = 2, hence the module entities are twice as close as the

16
original ontology.

EMT7: Cohesion Cohesion refers to the extent to which entities in a module are
related to each other. Several works describe ontology cohesion as a set of metrics
to measure the modular relatedness of ontologies using different formula [48, 115,
118, 164]. In order to accurately measure the cohesiveness for ontology modules, we
use a metric defined by Oh et al. [118]. Cohesion metrics provided by others were
not suitable as they were generalised for ontologies and not towards modules [164],
or too restrictive as they only considered relations containing strong and moderate
dependencies between entities, and did not consider relations that are neither strong
nor moderate [39]. This is measured by calculating the sum of the strength of relations
divided by the number of all possible relations in a module M. Cohesion values are
between the range of 0 and 1, where values close to 0 describe modules with entities
that have few or no relations, and value close to 1 describe modules with entities that
have many relations.

> X mmien iIM]>1
Cohesion(M) = { CieM C;eM (4.8)
1 otherwise

where |M| is the number of entities in the module as described in EM1. The
product of |M|(]M| — 1) represents the number of possible relations between entities

85

in M. The strength of relation for each entity is calculated based on the farness
centrality measure for graph theory proposed by Freeman [43] from equation 4.6.

if relations exist between c¢; and c; (4.9)

1
SR(Ci, Cj) —) farness(i) .

0 otherwise
Example 12 Consider module M, from Figure 4.3. In Table 4.3, we have the values
for farness and the inverse of farness which is used to calculate the cohesion. The sum
of all the 1/farness values is 10. Hence the cohesion value is as follows: Cohesion =

10 _

Table 4.3: The farness and strength of relation (1/farness) values for each entity of
the ontology.

Farness, M 1/farness, M

A/B|C|D|E|Sum A B |[C |D |E Sum
Al- 112210 [A[- [11|1/1|1/2]1/2]3
B[l |- (0L [1]7 B|1/1]|- |0 |1/1|1/1]3
cCi1 (0 |-1010]1 C|1/1]0 - 0 0 1
D210 /|- 0|7 D|1/2]|1/1|0 - 0 1.5
E| 21010 |- |7 E|[1/2]|1/1|0 0 - 1.5
Cohesion (M) = 0.5

4.2.2 Logical Criteria

The Web Ontology Language (OWL) is based on a decidable fragment of first order
predicate logic. As such, it is possible to evaluate ontology modules by the logical
criteria that they hold.

EMS: Correctness®* Correctness states that every axiom that exists in the module
also exists in the original ontology and that nothing new should be added to the
module. Several works mention the logical correctness criterion [31, 35, 98, 124].
Correctness was proposed as a condition [31] or requirement [98] for logical modules,
and later on as an evaluation criteria [35]. There is no mathematical equation to
measure it hence we formulate it as follows:

Correctness(M) =

{true if Arioms(M) C Azioms(O) (4.10)

false otherwise

Example 13 The GFO-Abstract-Top ontology is a subset of the GFO ontology. No
new axioms have been added to the GFO-Abstract-Top ontology; it only contains those
axioms which exist in the GFO ontology. Thus, the GFO-Abstract-Top ontology is
logically correct. The GFO-Basic ontology, however, is a smaller module based on the
GFO ontology but it also contains new axioms that do not exist in the GFO ontology.

86

For instance, the entity Processual Structure ezists in the GFO-Basic module but not
in the source ontology, GFO. Thus, the logical correctness property does not hold for
the GFO-Basic module.

EM9: Completeness* A module is logically complete if the meaning of every
entity is preserved as in the source ontology. The completeness property evaluates
that for a given set of entities or signature, every axiom that is relevant to the entity
as in the source ontology is preserved in the module. Like correctness, several works
mention the logical completeness criterion [31, 35, 98, 124]. Completeness was pro-
posed as a condition [31] or requirement [98] for logical modules, and later on as an
evaluation criteria [35]. There is no mathematical equation to measure it hence we
formulate it as follows:

true if i Azioms(Entity;(M)) = Azioms(Entity;(O))
Completeness(M) = i

false otherwise
(4.11)

Example 14 In the source ontology, DOLCE the endurant entity is defined as fol-
lows:

e endurant C VY part.endurant

e endurant C spatio-temporal-particular

e endurant C 1 participant-in.perdurant

e endurant C VY specific-constant-constituent.endurant
e endurant C — quality

e endurant C — perdurant

e endurant C — abstract

If DOLCE were to be modularised to create a branch module, containing only
the branch of Endurant entities, DOLCE-endurants, the endurant entity is defined as
follows:

e endurant C VY part.endurant
e endurant C spatio-temporal-particular
e endurant C 1 participant-in.perdurant

The meaning of the endurant entity was not preserved in the module since the
axtom endurant C V specific-constant-constituent.endurant ezisted in the original on-
tology but not in the module. Therefore the DOLCE-endurants module has a false
value for the completeness metric.

87

4.2.3 Relational criteria

Relational criteria deal with the relations and behaviour that modules exhibit with
other modules in a system of interrelated modules.

EM10: Inter-module distance* The inter-module distance in a set of modules
has been defined as the number of modules that have to be considered to relate two
entities [34, 35]. Based on this definition, we have created an equation to measure
the inter-module distance of a network of modules.

NM(Cs,Cy
| > mton (M Ma)| > 1
Inter-module distance = § Ci,C3€(Mi,,My)
1 otherwise
(4.12)
where NM(C;, C;) is the number of modules to consider to relate entities ¢ and
j. The product of |(M;, .., M,)|(|(M;, .., M,)| — 1) represents the number of possible

relations between entities in a set of modules M;, ., M,,.

Example 15 Consider the two sets of inter-related modules S1 and S2 in Figure 4.4.
For each entity pair in S1, we have the number of modules, NM, that have to be
considered to relate them in Table 4.4. The sum of NM for S1 is 313. The number of
entities in S1 is 12, hence the |(M;, .., M) |(|(M;, .., M,,)| — 1) value = 12(11). Thus
the inter-module distance for S1 is 123(1131) = 2.37. For S1, it takes 2.37 modules to
relate two entities in the set.

In 52, some of the entities that exist in S1 have been removed, notably entities
J, K, and L. For each entity pair in S2, we have the number of modules, NM, that
have to be considered to relate them in Table 4.5 The sum of NM for S2 is 126. The
number of entities in S2 is 9, hence the |(M;, .., My)|(|(M;, .., My,)| — 1) value = 9(8).
Thus the inter-module distance for S2 is 91(182) = 1.75. For S2, it takes 1.75 modules
to relate two entities in the set.

Thus, it is apparent that the inter-module distance for S1 is larger than that of
S2; the entities in S1 are farther away than in S2.

EM11: Coupling® Coupling has been defined in several works as a measure of
the degree of interdependence of a module [48, 118, 115, 119]. The coupling value is
high if entities in a module have strong relations to entities in other modules; it is
difficult to modify and update such modules independently because they affect other
modules in the system. For instance, in the EDAM bioinformatics ontology [70], the
object property is_format_of has as domain the class Format and range Data. When it
was partitioned with SWOOP, the Data class was present in the first partition while
Format and is_format_of were present in the third partition, and the different modules
are linked together with e-connections. Changes to the Data class in the first partition
could affect the third partition since it is linked to entities in the third partition.

88

Set of Modules: S1

Module M4
A
Module My
B —J Ll o
| | —
F K L
- Module M Module M3 -
G C
|
v v v v
E H I
Set of Modules: S2
Module M4 AL |
B J
i
F
é Module M3 (;
Modu% M
v : !
D E H |

Figure 4.4: Two sets of modules S1, S2 with inter-related links. The plain arrow
links between entities denote relations between entities in the same module while the
dotted arrow links denote relations between entities in different modules.

89

Table 4.4: The number of modules, NM, that have to be considered to relate two

entities in the set of modules (S1).

23
23
29
29
29
23
29
29
30
23
23
23
| 313 |

AIBICIDIE|IF/IGH|I|J|K|L|Sum

| NM(C;, Cy) =

Table 4.5: The number of modules, NM, that have to be considered to relate two

entities in the set of modules (S2).

14
14
14
14
14
14
14
14
14

126

A/IB|C|/D|E|F G| H|I|Sum

NM(C,,C;)

90

Table 4.6: The number of external links, NEL, that have to be considered to relate
M1 to other modules in the system.
M1 | M2 | M3

M1 | - 1 1

To measure the coupling of a module, we define our own measure as a ratio of the
number of external links between a module M; and M;, NELyy, M; for n modules in
a system to every possible external link between a module M; and M, in a system.

" & NELwm; M;
. 2 2 g NELa; >0
Coupling(M;) = ¢ =127 (4.13)
0 otherwise
where || is the number of entities in the current module and |M;]| is the number

of entities in a related module in the set of n modules.

Example 16 Consider module My from the S2 set of inter-related modules in Fig-
ure 4.4. We have tabulated the number of external links that have to be considered to
relate M, to other modules in the set, NE Ly pi. The number of possible external
link between a module My and the other modules in the system is calculated as follows:
| My |(|Ma]) + | My |(|Ms|) = 18. Hence the coupling(M,) = & = 0.11 which indicates
a low interdependence toward other modules in the system.

EM12: Redundancy Redundancy has been defined as the duplication of axioms
within a set of ontology modules [137]. When a large ontology is partitioned into
smaller modules, there are sometimes modules that overlap with regard to shared
knowledge. Thus axioms exist in more than one modules. Sometimes this is required
for robustness or efficiency. However, these redundant axioms cause difficulty in
maintaining the consistency of the modules when modules are to be updated. For
instance, consider that the same class Bread exists in two or more related modules in
an ontology describing the domain of food science. In recent years, there has been a
shift towards Gluten-free foods, therefore, the axiom Bread C JhasProtein.Gluten has
now been removed from one of the modules. The class definitions for the Bread class
may differ in the various modules causing inconsistency in the system, and each of
the other modules containing the Bread class must be altered to remove the axiom.

To measure redundancy in a set of modules, we use Schlicht and Stuckenschmidt’s
equation [137]; the level of redundancy in a set of n modules is calculated as the
fraction of duplicated axioms as follows:

k
(X mi)—n
Redundancy = =1 (4.14)

k
>N
=1

91

k

where) n; is the total number of axioms and n is the number of distinct axioms
i=1
in a module. The resulting fraction is a value of redundancy.

Example 17 Consider the class declarations and azioms in the set of modules with
no inter-related links that have been partitioned from a food ontology. There are 3
ontology modules: Fruit, Vegetable, and Meat, described below. Axioms that have
been repeated more than once (redundant azioms) are shown in bold font.

Fruit module

e FEdiblePlant

e Fruit

e Flavour

o SweetFlavour

e hasFlavour

o Fruit C EdiblePlant

o Fruit C 3 hasFlavour.SweetFlavour

Vegetable module

e EdiblePlant

o Vegetable

e Flavour

e SavouryFlavour

e hasFlavour

e Vegetable C EdiblePlant

e Vegetable C 3 hasFlavour.SavouryFlavour

Meat module
o Meat

RedMeat

Flavour

SavouryFlavour

hasFlavour

92

o RedMeat T Meat
e Meat T 3 hasFlavour.SavouryFlavour

From the three modules, there is a total of 21 axioms, i.e., the Ax; value is 21.
There are 15 distinct azioms that exist in the set of modules (these axioms exist at
most once and are those that are not in bold font), hence Axy is 15. The redundancy
of the set of partitioned modules is thus 212’115 = 0.29. Hence, 29% of the axioms in
the set of modules are redundant.

4.2.4 Information hiding

Ontology modules sometimes deal with hiding aspects of the source ontology from
the module for privacy and simplification reasons. Information hiding within modules
assesses whether the module encapsulates all the information in the module such
that the privacy is preserved for each module. We formulate the following criteria to
measure information hiding properties of an ontology module.

EM13: Encapsulation®* d’Aquin et al. mention encapsulation with the notion
that “a module can be easily exchanged for another, or internally modified, without
side-effects on the application can be a good indication of the quality of the module”
[35]. This general idea seems potentially useful for semantic interoperability. There
are two components to d’Aquin et al.’s encapsulation:

e ‘Swappability’ of a module, which increases with fewer links to entities in an-
other module in an ontology network; e.g., one can interchange their domain
ontologies between foundational ontologies using the SUGOI tool [81].

e Casting it into a measure of knowledge preservation within the given module.

We have designed an equation to calculate the encapsulation of a module in a
given a set of modules. For a module, with n — 1 related , this is measured using the
number of axioms in the given module |Axz;| and the number of axioms that occur in
both the given module and related modules, |Ax;;|.

n—1
>
Encapsulation(M_i) =1 — % (4.15)
Encapsulation values in modules that are equal or close to 1 indicate a good
value; all or most of the knowledge has been encapsulated. Conversely, values that
are equal to or close to 0 indicate a poor encapsulation value; none or very little of
the knowledge has been encapsulated, and privacy has not been preserved.

Example 18 Consider the 3 ontology modules Fruit, Vegetable, and Meat, from Ex-
ample 17. We calculate the encapsulation of the Fruit module as follows. There are
7 axioms in the Fruit module, i.e., the Ax; = 7. In the Vegetable module, there are

93

3 overlapping azxioms, i.e., they also exist in the Fruit module. In the Meat module,
there are 2 overlapping axioms, i.e., they also exist in the Fruit module. Hence, the
3,2

Encapsulation(Fruit) is calculated as 1 — % = 0.76. Thus, 0.76 (76%), or a large
amount of the domain knowledge is encapsulated in the Fruit module but the complete

privacy of the Fruit module is not preserved.

EM14: Independence* Independence evaluates whether a module is self-contained
and can be updated and reused separately. In this way, ontology modules can evolve

independently. Thus, the semantics of the entire ontology could change without the

need for all the modules to be changed. For instance, for the set of Gist foundational

ontology modules [103], if information about physical things need to be updated, the

relevant module gistPhysicalThing could be updated without needing to alter the re-

maining modules. In order to determine whether a module is independent, we use

the encapsulation and the coupling equations. A module is set to be independent if it

has an encapsulation value of 1 and a coupling value of 0. This can be checked using

the following code rule.

true Encapsulation(M;) =1 and Coupling(M;) = 0

4.16
false otherwise ()

Ind(M_i) = {

where |M;| is the number of entities in the current module and |M;| is the number of
entities in a related module in the set of n modules.

Example 19 Consider the 3 ontology modules in Example 17. We have already
worked out the encapsulation value for the Fruit module in Example 18 as 0.76. There
are no inter-related links between the modules hence the coupling value is 0. Since
the encapsulation value is not 1, the conditions for independence do not hold for the
Fruit module hence it is not independent.

4.2.5 Richness criteria

The richness or amount of information in an ontology is designed as one aspect to
measure the quality of an ontology. For modules, this is important to measure in cases
where abstraction is employed to compare the granularity of the source ontology to
that of the module. Tartir et al. [151] propose measurable richness schema metrics
for these which we describe in this section.

EM15: Attribute richness Attribute richness is defined as the average number
of attributes per class [151]; i.e., each class is defined by a number of axioms with
properties describing it, which is referred to as attributes.

_ |att]

AR(M) = 1o,

(4.17)

94

where att is measured by the number of data properties in the module |DP| and
|C'| is the number of classes in the module. In an ontology, an attribute is used to
describe an entity and each attribute, or data type, has a name and value.

Example 20 The pizza ontology has no data properties (attributes) defined. The AR
value 1s 0, therefore there is no attribute richness in the pizza ontology.

EM16: Inheritance richness The formal definition of the inheritance richness of
an ontology is the average number of subclasses per class, and its formula follows.

> |HO(C, G

o C,eC

IRs(M) (4.18)

Cl
where |HY(Cy,C;)| is the number of subclasses per class and |C| is the total
number of classes in the ontology.

Example 21 Refer back to ontology O and module M from Figure 4.3. For module
M, the entities which have subclasses are entity A with 2 subclasses, and entity B with
2 subclasses. Hence the |HC(Cy, C;)| value is 2+ 2 = 4. There are 5 classes in total
in M. The I Rs value for M is thus = = 0.8. Using the same method we work out the
I Rs value for ontology O, which is 2 = 0.85.

~ o0t

A summary of each evaluation metric, its value range, and good values where
applicable is shown in Table 4.7. To assist with the lack of evaluation metrics and
corresponding formulae in ontology modules, we presented a comprehensive list of
metrics in the dimensions for modularity in Section 4.2. The problem at hand now is
that it is unclear which metrics should be used for which module types. Metrics such
as size do not fare well with modules created using locality-based techniques (recall
the BFO-Occurrent module that was 92% of the size of the original BFO ontology
because the existing tools which used locality-based techniques), while completeness
and correctness do not measure well with partition-based modules [124]. This could
mean that only specific metrics must be used to acquire meaningful results about
the quality of an ontology module, based on the nature of the module. To solve
this problem, we developed software support, Tool for Ontology Modularity Metrics
(TOMM), to apply them to modules to measure these metrics and determine which
metric values correspond to which module types, i.e., how to measure if a module is
of good quality.

In the following Section, we introduce the TOMM tool. Thereafter we perform
an experimental evaluation using TOMM and a set of modules to determine how to
measure the quality of a module. TOMM is then evaluated with use-cases. This work
has been published in [87]

4.2.6 Tool for ontology module metrics

In order to uncover information about how evaluation metrics relate to ontology mod-
ules, we have created a Tool for Ontology Modularity Metrics (TOMM). TOMM is

95

Table 4.7: A summary of the set of evaluation metrics with their expected value
range and values that are considered good. For the good values, we use a 4-point
scale of small (0-0.25), medium (0.25-0.5), moderate (0.51-0.75), and large (0.75-1),
and true/false values.

Evaluation metric Value range | Value type | Good value
EM1: Size 1 >0 integer -

EM2: Relative size 1>7>0 decimal small to medium
EMS3: Appropriateness 1>:>0 decimal large

EM4: Atomic size 1>7>0 decimal -

EM5: Intra-module distance |7 >0 decimal -

EMG6: Relative intra- . .

module distance 120 mteger)

EMT7: Cohesion 1>7>0 decimal small

EMS: Correctness true or false | boolean true

EM9: Completness true or false | boolean true

EM10: Inter-module distance | ¢ > 0 decimal -

EM11: Coupling 1 >0 decimal small

EM12: Redundancy 1>:>0 decimal small to medium
EM13: Encapsulation 1>¢>0 decimal large

EM14: Independence true or false | boolean true

EM15: Attribute richness 1>0 decimal -

EM16: Inheritance richness 1>0 decimal -

programmed with all the defined equations describing the new and existing evaluation
metrics discussed in Sections 4.2.1 to 4.2.5.

TOMM is a stand-alone Java application and can be downloaded from http://
www.thezfiles.co.za/Modularity/TOMM. zip. TOMM allows one to upload
a module or set of related ontology modules, together with an original ontology (if
it exists), and then it computes metrics for the module/s. A screenshot of TOMM’s
interface is shown in Fig. 4.5. The metrics are saved as a log file on the user’s computer
as shown in Figure 4.6.

The metrics in the TOMM software tool are grouped into three different parts,
depending on what the developer needs to measure. There are 1) metrics for a single
module, for when the user wishes to evaluate a module on its own, 2) metrics for
a set of related modules, for when the user wants to evaluate a set of modules that
are related to each other, and 3) metrics for an original ontology, for when the user
wants to evaluate a module or set of modules together wish a corresponding source
ontology. Metrics for a single module contain the following evaluation metrics: EM2,
EM6, EMS, and EM9. Metrics for a set of related modules contain the following eval-
uation metrics: EM11- EM14. Metrics for an original ontology contain the following
evaluation metrics: EM1, EM3- EM5, EM7, EM15, and EM16.

By evaluating the modules with TOMM, we will be able to determine which
evaluation metrics can be used to measure which module types, and which will lead

96

& —] pd
TOMM Tool for Ontology Module Metrics

1. Load module Processing metrics for kisao.owl ... i
Metrics saved to CilUsers\Zubeidallogsikisao. owl bd
Processing metrics for Kisao_parition1.owl ...

Metrics saved to CilUsers\Zubeidallogsikisao_partitio

2. Load original ontology Processing metrics for Kisao_parition2.owl ...
Metrics saved to C\Users'\Zubeida\Logs\kisao_partitio &
3 Run metrics - r'\ _/' >

Figure 4.5: The interface of TOMM.

Log file for kisao partitionl.owl

Metrics for kisaoc partitionl.owl

No. of classes in ontology: 125

No. of OP in ontology: 6

No. of DP in ontology: 2

No. of Ind in ontology: 15

Size of ontology: 148

Ztomic size of module: 4.263513513513513

No. of axioms in ontology: 327

Zppropriateness of ontology: 0.7836344745633782
Intra module distance: 1453.5

Cohesion of ontology: 0.016505025433556783
Zttribute richness of ontology: 0.016
Inheritance richness of ontology: 0.072
Encapsulation of ontology 0.5871559633027522
Coupling of ontology 1.73220162826955306E-4

I= the ontology independent? false

Log file for relative metrics for kisao partitionl.owl

Relative Metrics for kisao partitionl.owl compared to
kizao.owl

RBelative =ize of module: 0.5873015873015873

BEelative intra module distance of module: 22.45831538395%73z2
The module i= not logically correct. The following axiom
exizts in the module but not in the original ontology:
Classhs=sertion(owl:ForeignClass
<http://www.biomodels.net/kisac/EISROFEISAC 0000418>)

The module is not logically complete. The meaning of the
entity: <http://www.biomodels.net/kisao/RISACHEISAC 0000215>
i= not preserved in the module a= it is in the source
ontology.

Time taken for processing: 0.422 seconds, 0.007033333333333333
minutes, 1.1722222222222221F-4 hours.

Figure 4.6: A log file for the kisao-partition ontology module generated by TOMM.

97

to uncovering the problem of evaluating a module to determine whether it is of good
quality.

4.2.7 Experimental evaluation

The purpose of the experiment is to evaluate modules with a set of metrics using
TOMM to determine which metrics can be used to evaluate which module types and
how to tell if a module is of good quality. We expect that the results will determine
how the metrics of a module relate to other factors, such as technique to create them.
Once the dependencies have been created between a module’s type and evaluation
metrics, we randomly selected two ontology modules to evaluate with TOMM and
determine whether they are of good quality.

4.2.7.1 Materials and methods

The method for the experiment is straightforward:
1. Collect a set of ontology modules.
2. Run the TOMM tool for each module.
3. Conduct an analysis from the evaluation results for each module.

The materials used for the experiment were as follows: Protégé v4.3 [110], TOMM,
and a set of 189 ontology modules previously used in the experiment on classifying
modules in Section 3.6 that were collected from ontology repositories that serves as the
training set. This set contains modules of 14 different types, which are summarised in
Appendix A. All the test files used for this experimental evaluation can be downloaded
from www.thezfiles.co.za/Modules/testfiles.zip.

4.2.7.2 Results

We ran TOMM for each of the 189 modules in order to discover potential relationships
between the different modules and their metrics. Metrics were successfully generated
for 188 modules. The ‘FMA _subset’ module (from T12: weighted abstraction mod-
ules) was too large for TOMM to process due to insufficient Java heap space size and
increasing the parameters caused the machine to crash. We are looking at running
TOMM on a High-Performance Computing Cluster in the future. The metrics values
for each module type are displayed in Tables 4.8- 4.10, and we discuss them here.

For size, T7 (ontology matching) modules are very small, only 2% compared to
the original ontology. T2 (subject domain) could not be evaluated with the relative
size metric as there were no original ontologies. T13 (expressiveness sub-language) is
as large as the original ontology. For appropriateness, T10 (entity type abstraction)
is the most appropriate at 0.99, meaning that most of the modules have between
200-300 axioms.

98

66

Table 4.8: Averages for the structural metrics of the set of modules.

No. of . Relative | No. of | Appropr- | Atomic Intra ‘Relatlve .
Type Size module intra-module | Cohesion

modules Size axioms | iateness size . .

distance distance

T1 13 11.08 0.10 410.00 | 0.38 5.35 17.00 20.69 0.04
T2 42 125.62 | - 409.19 | 0.64 5.18 16080.50 - 0.03
T3 7 85.43 0.79 367.86 | 0.24 6.31 8595.00 0.99 0.09
T4 3 29.00 0.34 261.67 | 0.47 10.10 853.33 63.65 0.09
T5 2 33.50 0.30 168.50 | 0.61 7.20 714.00 1.04 0.11
T6 10 417.20 | 0.21 922.5 0.49 3.17 504773.90 | 0.03 0.13
T7 90 2.26 0.02 14.02 0.009 1.33 0.97 2.48 0.15
T8 4 844.75 | 0.60 2166.75 | - 3.77 163319.00 | 1.03 0.01
T9 1 94.00 1.00 884.00 | - 2.89 12322.00 - 0.07
T10 |1 103.00 | 0.56 257.00 | 0.99 4.21 23596.00 1.04 0.07
T11 |3 279.67 | 0.51 715.67 | 0.89 3.72 1767.67 0.88 0.01
T12 |3 158.00 | 0.41 582.00 | 0.02 5.84 23304.30 1.93 0.03
T13 |6 305.50 | 1.00 1019.17 | 0.46 4.35 233449.00 | 1.00 0.02
Ti4 |1 1360.00 | 0.97 4369.00 | - 5.57 1396298.00 | 1.00 0.02

00T

Table 4.9: Medians for the structural metrics of the set of modules.

No. of . Relative | No. of | Appropr- | Atomic Intra .Relatlve .
Type Size module intra-module | Cohesion

modules Size axioms | iateness size . .

distance distance

T1 13 10.00 0.02 115.00 | 0.34 5.50 5.00 20.69 0.005
T2 42 65.50 - 221.00 | 0.64 5.31 13.00 - 0.005
T3 7 97.00 0.90 444.00 | 0.11 6.31 11714.00 1.00 0.06
T4 3 35.00 0.02 211.00 | 0.47 5.00 1004.00 63.66 0.09
T5 2 33.50 0.30 168.50 | 0.61 7.20 714.00 1.04 0.11
T6 10 251.00 | 0.17 519.00 | 0.30 2.99 168705.00 | 0.00 0.11
T7 90 2.00 0.01 14.00 0.007 1.00 0.00 0.00 0.00
T8 4 781.00 | 0.56 1941.00 | - 3.64 41582.5 1.02 0.01
T9 1 94.00 1.00 884.00 | - 2.89 12322.00 0 0.07
T10 |1 103.00 | 0.56 257.00 | 0.99 4.21 23596.00 1.03 0.07
T11 |3 80.00 0.49 212.00 | 0.89 3.77 298.00 1.00 0.01
T12 |3 99.00 0.42 580.00 | 0.02 5.87 3631.00 2.17 0.03
T13 |6 90.00 1.00 393.00 | 0.38 4.33 473.50 1.00 0.01
Ti14 |1 1360.00 | 0.97 4369.00 | - 5.65 1396298.00 | 1.00 0.02

10T

Table 4.10: Average, median, and boolean values for the logical, richness, information hiding, and relational criteria.

Logical criteria

Richness criteria

Type | Correctness Completeness Attribute richness | Inheritance richness
True False True | False Average | Median | Average | Median
T1 0% 100% 100% | 0% 0.83 0.67 1.48 1.00
T2 - - - - 1.45 1.27 2.37 1.94
T3 29% 1% 0% 100% 0.84 0.92 2.30 2.42
T4 100% 0% 33% | 67% 3.61 1.47 1.79 1.40
T5 0% 100% 0% 100% 0.87 0.87 2.45 2.45
T6 60% 40% 60% | 40% 0.10 0.00 54.32 4.32
T7 52% 48% 1% 99% 0.05 0.00 1.19 1.00
T8 100% 0% 0% 100% 0.71 0.56 3.15 2.55
T9 100% 0% 0% 100% 0.00 0.00 2.38 2.38
T10 | 100% 0% 0% 100% 0.00 0.00 3.06 3.06
T11 | 33% 67% 0% 100% 0.58 0.67 2.44 2.57
T12 | 33% 67% 33% | 67% 1.05 0.84 2.89 2.59
T13 | 83% 17% 0% 100% 0.73 0.76 2.72 2.49
T14 | 0% 100% 0% 100% 1.78 1.78 3.04 3.04
Information hiding criteria Relational criteria
Type | Encapsulation Independence Coupling Redundancy
Average | Median True False | Average | Median | Average Median
T2 0.95 0.95 9% 91% | 0.00 0.00 0.14 0.12
T6 0.99 0.99 70% 30% | 0.0000256 | 0.00015 0.00065 0.00065
T7 1.00 1.00 100% 0% 0.00 0.00 0.00 0.00
T8 0.47 0.46 0% 100% | 0.00 0.00 0.50 0.50

The relative intra-module distance values determine by how many units (paths
between entities) the module has been reduced. T4 (locality) modules were reduced
with a high value by 63.65 units followed by T1 (ontology design patterns) by 20.69
units. The T4 (locality), T8 (optimal reasoning), T9 (axiom abstraction), and T10
(entity type abstraction) modules all hold the correctness metrics; every axiom that
exists in the module also exists in the source ontology and nothing new had been
added. T1 (ontology design pattern) modules are the only set that all hold the
completeness metric; the meaning of every entity in the module is preserved as in the
source ontology. For attribute richness, T4 (locality) modules were the richest with a
value of 3.61; these modules have on average 3.61 attributes per class. For inheritance
richness, T6 (domain coverage) modules had a large value of 54.32 indicating many
subclasses per class.

The information hiding and relational criteria only apply to module sets, T2 (sub-
ject domain), T6 (domain coverage), T7 (ontology matching), and T8 (optimal rea-
soning). For encapsulation, T7 (ontology matching) modules had a high value of
1; the knowledge is preserved in the individual modules, and they can be changed
individually without affecting the other modules in the set. For coupling, most of
the modules had 0 values (no links to other modules in the set). The T7 (ontology
matching) modules are independent; they are self-contained and also do not contain
links to other modules in the set.

4.2.7.3 Dependencies between type and evaluation metric

We examine the types of modules against the evaluation metrics. The dependency
relationship between all these techniques and properties are displayed in Table 4.7.
The metrics and values in bold font are those which evaluate well for a module type;
hence such a module is considered of good quality. These values were set as ‘good
values’ initially (recall Table 4.7), where the metrics were summarised. We discuss
some notable dependencies here. T1: Ontology design pattern module is of good
quality if its relative size is small, cohesion is small, and completeness is true. T2:
Subject domain modules have a number of expected values for the metrics. For
T3: Isolation branch modules, T13: Expressiveness sub-language modules, and T14:
Expressiveness feature modules, the only dependencies that they have is that the
cohesion is expected to be small. T6: Domain coverage modules, T7: Ontology
matching modules, and T8: Optimal reasoning modules are highly dependent on
relational criteria such as encapsulation, coupling, and redundancy.

4.2.7.4 Evaluating TOMM with ontology case-studies

We selected three existing cases of ontology modularisation to evaluate the metrics
and the dependencies between the type and evaluation metrics. These three cases are
modules that do not exist in the training set.

Example 22 (QUDT ontology modules) This follows on from the earlier exam-
ple 3 of the evaluation of the framework. Recall that the Quantities, Units, Dimen-
sions and Data Types (QUDT) ontology modules are a set of modules about science

102

T1: Ontology design
pattern modules

Relative size: small
Cohesion: small
Completeness: true
Size: 1-10
No. of axioms: 50 - 410
Appropriateness: medium
Atomic size: 3.5 - 6.9
Intramodule distance: 0 - 97
Relative intramodule distance: 11 - 30.38
Correctness: false
Attribute richness: 0 - 3
Inheritance richness: 1 - 4

T2: Subject domain modules

Cohesion: small
Encapsulation: large
Coupling: small
Redundancy: small
Size: 10 - 1103
No. of axioms: 46 - 3954
Appropriateness: moderate
Atomic size: 3.42 - 7.66
Intramodule distance: 0 - 340383
Attribute richness: 0 - 3.44
Inheritance richness: 1 - 6.44

T3: Isolation branch modules

Cohesion: small
Size: 18 - 141

Relative size: large
No. of axioms: 127 - 491
Appropriateness: small
Atomic size: 5.23 - 7.49

Intramodule distance: 496 - 13942
Relative intramodule distance: 0.94 - 1
Completeness: false
Attribute richness: 0 - 1.87
Inheritance richness: 1.77 - 2.75

T4: Locality modules

Relative size: medium
Cohesion: small
Correctness: true
Size: 1 - 51
No. of axioms: 127 - 491
Appropriateness: medium
Atomic size: 1 - 24.32
Intramodule distance: 0 - 1556
Relative intramodule distance: 1 - 126.31
Attribute richness: 0.07 - 9.3
Inheritance richness: 0.47 - 3.5

T5: Privacy modules

Relative size: medium
Cohesion: small
Size: 22 - 45
No. of axioms: 79 -259
Appropriateness: moderate
Atomic size: 5.05 - 9.36
Intramodule distance: 102 - 1326
Relative intramodule distance: 1.01- 1.08
Correctness: false
Completeness: false
Attribute richness: 0.69 - 1.05
Inheritance richness: 1.71 - 3.18

Figure 4.7: The set of metrics that can be measured for each module type. Metrics

T6: Domain coverage modules

Relative size: small
Cohesion: small
Encapsulation: large
Coupling:small
Redundancy:small
Size: 10 -1638
No. of axioms: 18 - 3994
Appropriateness: medium
Atomic size: 2.63 - 4.29
Intramodule distance: 0 - 3323816
Relative intramodule distance: 0 - 0.03
Attribute richness: 0 - 0.67
Inheritance richness: 2.25 - 4.52

T7: Ontology matching
modules

Relative size: small
Cohesion: small
Encapsulation: large
Independence: true
Coupling: small
Redundancy:small
Size:1-10
No. of axioms: 6 - 36
Appropriateness: small
Atomic size: 1 - 2.1
Intramodule distance: 0 - 9
Relative intramodule distance: 0 - 6
Attribute richness: 0 - 2
Inheritance richness: 1 - 2

T8: Optimal reasoning
modules

Cohesion: small
Correctness: true
Encapsulation: large
Coupling: small
Redundancy:medium
Size:662 - 1155
Relative size: moderate
No. of axioms: 1376 - 3409
Atomic size: 2.85 - 4.96
Intramodule distance: 0.009 - 0.02
Relative intramodule distance: 1 - 1.05
Completeness: false
Attribute richness: 0.16 - 1.54
Inheritance richness: 1.86 - 5.66
Independence: false

T9: Axiom abstraction
modules

Cohesion: small
Correctness: true
Size:94
Relative size: large
No. of axioms: 884
Atomic size: 2.89
Intramodule distance:0.07
Completeness: false
Attribute richness: 0
Inheritance richness: 2.38

T10: Entity type abstraction
modules

Appropriateness: large
Cohesion: small
Correctness: true
Size:102
Relative size: moderate
No. of axioms: 257
Atomic size: 4.21
Intramodule distance: 23596
Relative intramodule distance: 1.04
Completeness: false
Attribute richness: 0
Inheritance richness: 3.06

T11: High-level
abstraction modules

Appropriateness: large
Cohesion: small
Size:3 - 45

Relative size: moderate

No. of axioms: 184 - 1751

Atomic size: 3.61 - 3.78

Intramodule distance: 133 - 4854
Relative intramodule distance: 0.61 - 1.02
Completeness: false

Attribute richness: 0.33 - 0.73
Inheritance richness: 2 - 2.75

T12: Weighted abstraction
modules

Relative size: medium
Cohesion: small
Size: 45 - 147

No. of axioms: 479 - 687

Appropriateness: small

Atomic size: 3.81 - 7.82

Intramodule distance: 3539 - 62 743
Relative intramodule distance: 0.88 - 2.73
Attribute richness: 0 - 2.31
Inheritance richness: 2.56 - 3.5

T13: Expressiveness sub-
language modules

Cohesion: small
Size: 81 -1401

Relative size: large
No. of axioms: 323 - 4214
Appropriateness: medium

Atomic size: 3.85 - 4.94
Intramodule distance: 457 - 1398343
Relative intramodule distance: 1 - 1.002

Completeness: false

Attribute richness: 0 - 1.27
Inheritance richness: 1.93 - 3.75

T14: Expressiveness feature
modules

Cohesion: small
Size: 758
Relative size: large
No. of axioms: 4369
Atomic size: 5.57
Intramodule distance: 1396298
Relative intramodule distance: 1.001
Correctness: false
Completeness: false
Attribute richness: 1.78
Inheritance richness: 3.04

and values in bold font are those which evaluate well for a module type.

103

terminology for representing physical quantities, units of measure, and their dimen-
sions [63]. According to the framework for ontology modularity, these modules are of
type T2: Subject domain modules. The modules fare well for 3 out of the 4 metrics
that are expected of T2: Subject domain modules; the cohesion is small, encapsulation
is large, and coupling is small (see Table 4.11). The redundancy of the QUDT mod-
ules is 0.50 which is moderate, as opposed to an expected small value. For the metrics
that are measured by their numerical values only, i.e., atomic size, attribute richness,
etc., the metrics are within the expected ranges summarised in Fig. 4.7. Thus accord-
ing to the metrics, the QUDT ontology modules are of good quality as subject domain
modules.

Table 4.11: The metrics for the QUDT ontology modules generated by TOMM;

approp = appropriateness, encap. = encapsulation, redund. = redundancy, avg. =
average, med. = median.
Structural criteria
. Intra
Size A.xtomlc N(?' of Approp. | module Cohesion
size axioms .
distance
Avg. | 595.38 | 5.71 3112.00 | 0.91 8577.25 0.008
Med. | 479.00 | 3.70 1443.50 | 0.91 86.50 0.003
Richness Information . o .
o . . 1 e . Relational criteria
criteria hiding criteria
AR IR Encap. | Coupling | Independence | Redund.
Avg. | 1.69 1.89 0.99 0 25% true 0.50
Med. | 1.40 1.84 0.99 0 75% false 0.50

Example 23 (The Pescado Ontology) The Pescado ontology contains knowledge
about the environment, such as meteorological conditions and phenomena, air quality,
and disease information [132]. The PescadoDisease module is a subset of information
only about diseases, so it is a locality module (type T4). The module fares well for
the cohesion metric, which is small, the appropriateness value (being medium), the
correctness metric (true), and for all those metrics measured by numerical ranges too,
according to the expected values of Figure 4.7. The only metric that differs is relative
size: the PescadoDisease module is small compared to the experimental data where
locality modules were medium.

Example 24 (The Symptom Ontology) This follows on from the earlier exam-
ple 6 of the evaluation of the framework. The Symptom ontology [6] contains

knowledge about the symptoms and signs of diseases. We use the OWL Module ex-
tractor tool to extract a module containing knowledge about the skin symptoms, with
a seed signature skin and integumentary tissue symptom, i.e., a locality module (type
T4). We can now determine whether the module set is of good quality by checking
the dependencies between type and evaluation metrics. The modules fare well for 2
out of the 8 metrics that are expected of locality modules; the cohesion is small, and

104

Table 4.12: The metrics for the Pescado disease ontology generated by TOMM; app
= appropriateness.

Structural criteria
Intra Relative
. Atomic | No. of] Relative | intra
Size . . App. | module | Cohesion | .
size axioms . size module
distance .
distance
39.00 | 3.10 128.00 0.51 158.00 0.16 0.03 10.61
Richness criteria Logical criteria
Afttrlbute Ipherltance Correctness Completeness
richness richness
0.00 1.67 True True

the correctness is true. The relative size of the module is small, 0.07, as opposed to a
medium value.

Table 4.13: The metrics for the Symptom skin ontology module generated by TOMM,;
app = appropriateness, IMD = intra-module distance.

Structural criteria

. Atomic | No. of) Relative | Relative
Size size axioms App. | IMD Cohesion size IMD
68.00 | 2.97 468.00 0.04 5597.00 | 0.22 0.07 1.00
Richness criteria Logical criteria

A'ttrlbute Iflherltance Correctness Completeness
richness richness

0.04 8.38 True True

Using TOMM and the use-cases, we were able to evaluate the quality of ontology
modules. For QUDT, Pescado, and Symptom we look up the expected values of
metrics for their respective module types using the dependency diagram (Figure 4.7)
that emerged from the experiment using TOMM metrics tool. With all three modules,
for most of their metrics, the values, as determined by the existing and new metrics
that were conveniently and automatically computed using TOMM are as expected
for their types; this indicates that the modules are of ‘good’ quality.

From the list of new and existing metrics with corresponding equations that were
compiled in Section 4.2, we were able to solve the problem that it is unclear how to
determine whether a module is a good or bad module due to the lack of evaluation
metrics. The list of module metrics was linked to various module types, by performing
an experimental evaluation. The metrics are now comprehensive enough to apply to
different types of modules whereas in previous work it was found that, for the criteria
that do exist to evaluate modules, certain tools do not satisfy certain criteria [124].

105

4.3 Ontology interchangeability

In Section 4.2, we investigated measuring the quality of an ontology module by using
new and existing evaluation metrics and the TOMM tool. In this Section, we inves-
tigate the idea of ontology interchangeability with the aim of improving the metrics
of a module.

The growth in the amount of Semantic Web applications and ontology-mediated
interoperability of complex software applications pushes demands for infrastructure to
facilitate with semantic interoperability. Already from the early days of the Semantic
Web, foundational ontologies have been proposed as a component to facilitate such
interoperability for they provide high-level categories that are common across various
domains and they have been proposed as a component to facilitate interoperability.
A number of foundational ontologies have been developed e.g., DOLCE [102], BFO
[102], GFO [62], SUMO [112], and YAMATO [106].

A top-domain ontology contains the fundamental concepts of a domain. They are
commonly used in large, complex domains such as medical systems, and distributed
media management [136]. Sometimes more than one top-domain ontology has been
developed for a particular domain, e.g., BioTop and [13] and GFO-Bio [66], which
provide concepts about life sciences. In some modular ontologies, foundational and
top-domain ontologies are components that exist in the system. At other times,
modules are used to extract a portion of the ontology for a particular use-case. For
instance, the DMOP ontology is modularised by removing some expressive power to
a DMOP-EL module to assist with faster reasoning [78].

Over the years, a considerable amount of research has been performed for mod-
ularity [20, 123, 131, 156] and modularity has been applied for various applications
[13, 71, 78, 111, 121]. However, there is not much support for module management,
i.e., software tools for modules. For instance, consider the modular ontology Sub-
cellular Anatomy Ontology (SAO) [95] containing BFO ontology as a foundational
ontology. Consider that upon validation of the ontology the developers notice that
none of the SAO domain entities exists in the bfo:occurrent branch of the ontology,
i.e., SAO does not need those entities. One solution is to modularise the SAO ontol-
ogy by removing the bfo:occurrent branch and all sub-entities. Another option is to
swap the BFO foundational ontology in the system for a subset module that already
exists, the bfo-continuants.owl ontology module from the ROMULUS repository [88].
Currently, there is no tool support to do this.

Seeing that in many applications, modules are used together as components, and
some of the components in a modular system are top-domain, foundational, and
leaner modules, it is worthwhile to investigate the impact on interchanging ontology
modules in a system, to first determine whether module interchangeability is possible
for the purpose of ontology interoperability and integration and whether it could lead
to some improvements concerning module metrics.

For this work on ontology interchangeability, we propose more mini questions, in
addition to the main research questions of the thesis. The questions we focus on here
are as follows, where O 4 denotes a domain module, and Ox and Oy are some modules
(be they foundational, top-domain, ontology design pattern, or arbitrary):

106

1. If O4 is linked to a module Oy, is it feasible to interchange it to be linked to a
different module Oy ?

2. Does interchanging ontology O4 between Ox and Oy have an impact on the
quality of the modules in the set?

3. Does interchanging ontology O between Ox and Oy have an impact on the
time taken for reasoning?

To solve this problem of insufficient module management tools and investigate
ontology interchangeability and its impact on a modular ontology, we have developed
Software Used to Gain Ontology Interchangeability (SUGOI). SUGOI was originally
developed for assisting with semantic interoperability by allowing for the interchange
among various foundational ontologies [81] but it was designed to easily handle ex-
tensibility making it easy to generalise it to be used among any kind of ontologies
provided input mapping files are provided. We adapted SUGOI to make a generalised
version, SUGOI-Gen. The aim of the investigation with SUGOI-Gen and ontology
use-cases in the following sections is to determine whether the interchangeability of
modules in modular systems is possible and whether they have an impact the quality
of the modules. The remainder of this section has been submitted for publication in
[89].

4.3.1 Interchangeability algorithm design

We first introduce the terms used for SUGOTI’s input files as they are referenced by
the algorithm, and thereafter the algorithm.

4.3.1.1 The interchangeability files

Because several ontology files are used in the interchangeability, we describe here the
terms used for each one. This follows with a diagram showing the various files in
Figure 4.8 for the modular SAO ontology.

e The Source Modular Ontology (°*O,,) that the user wants to interchange, which
comprises the Source Interchange Module (°M;) that is the modular component
of the source ontology that is to be interchanged, the Source Domain Modules
(*My) that is the domain modules in the ontology, and any equivalence or
subsumption mappings between entities in *M; and *M,.

e The Target Modular Ontology (*O,,) which has been interchanged, which com-
prises the Target Interchange Module (*M;), that is the modular component
of the target ontology that the user has selected to interchange to, the Target
Domain Modules (*M,) that is the domain modules in the ontology, and any
equivalence or subsumption mappings between entities in ‘M, and ‘M.

e Mapping ontology (*O): the mapping ontology between the *M; and the *M,.

e Domain entity: an entity from My or ‘M.

107

/ SAO-BFO.owl \ /SAO-BFO- Continuants.ovh

(Source Modular Ontology) (Target Modular Ontology)
SAO.owl
(Target Domain Module)

BFO-Continuants.owl
(Target Interchange module)

NS 2/

SAO.owl
(Source Domain Module)
[(Mapping ontology)

BFO- BFO-Continuants.owl }
BFO.owl
(Source Interchange Module)

Figure 4.8: The terminologies used for the files involved in interchangeability using
the SAO ontology.

4.3.1.2 Ontology interchangeability algorithm

The main steps for the interchangeability of the foundational ontology algorithm was
first introduced in earlier work [81]. Now, we have generalised the algorithm to be
used for the interchangeability of any module, and we provide the full algorithm here.

The general idea of the algorithm behind SUGOI is that it accepts a *O,,, consisting
of a *M, linked to a *M; (for instance, a foundational ontology such as DOLCE,
BFO or GFO) and converts it to a ‘O,, with a different *M;. The *O,), is provided
by the user. It does not matter whether the *M, is linked to a *M; by an import
or a merge. SUGOI accesses the remainder of the ontologies either by loading the
ontology from the online URI, by loading it from an offline file, or from the user’s
input files, depending on the version in use.

After the interchange process, all the domain entities from the * M, are present in
the ‘M. SUGOI links domain entities from the * M, to the ‘M, as follows. SUGOI
maps a domain entity’s superentity in the *M; to its corresponding superentity in the
t M; using the mapping ontology. If the domain entity’s superentity does not have
a corresponding mapping entity, SUGOI then treats that superentity as a domain
entity and looks for a corresponding mapping entity at a higher level up in the tax-
onomy. Thus, eventually, the domain entity from the * M, is mapped with on-the-fly
subsumption.

In this section, we provide the main steps of the algorithm and the full algorithm
thereafter in two parts (Algorithms 1-2).

1. Create a ‘O, (line 2 of Algorithm 1).
2. Copy axioms from the ‘M, to the ‘O,, (line 3 of Algorithm 1).
3. Copy the "M, (domain axioms) to the ‘O, (lines 4-9 of Algorithm 1).

4. Map the *M, domain entities to the *M; using the mapping ontology (lines
10-19 of Algorithm 1).

5. Perform on-the-fly subsumption if a domain entity from the previous step is not
linked to a *M; (lines 20-37 of Algorithm 2).

108

6. Delete * M, entities that are not referenced by the domain entities in the *O,,
(lines 38-52 of Algorithm 2).

Algorithm 1 Ontology interchangeability algorithm: part 1

e e T e T e T e T e T =S

19:
20:
21:
22:

Input *0,,, *M;, 'M;, *O
Output 'O,,
> Steps 1-2. Create an ontology 'O,,. Copy axioms from the *M; to the ‘O,,
t(’)m — t./\/li
> Step 3. Copy the * M, domain axioms to the ‘O,,
for all entity € *O,, do
if entity not in *M; then
current Axiom < get current axiom
add currentAziom to 'O,
end if
. end for
> Step 4. Map the * M, domain entities to the ‘M, using the *O
. for all entity € 'O,,, do > if entity is a domain entity
if entity not in *M;and entity not in ‘M, then
current Axiom < get current axiom
entitySet < get entities in signature of currentAxiom
for all signatureEntity € entitySet do
if signatureEntityin “O then eSignatureEntity < get equiva-

lent entity of signatureEntity currentAxiom < replace signatureEntity with
eSignature Entity in current Aziom
end if
end for
end if
end for

4.3.2 SUGOI ontology interchangeability tool

To test the effect of swapping a module for another aligned module in a system

of

modular ontologies, we have implemented the algorithm in Section 4.3.1.2, and

extended the SUGOI tool, Software Used to Gain Ontology Interchangeability, to a
generalised version, SUGOI-Gen.

There are a few different platform-independent versions of SUGOI as follows:

1. SUGOI-Gen Desktop online version: a platform independent jar file to be
executed on a local machine but requires internet connectivity. This version can
interchange any type of module but requires all input and mapping files from
the user.

2. SUGOI-FO Applet: an online web version integrated into the ROMULUS
repository [80]. This version is especially-designed to interchange between

109

Algorithm 2 Ontology interchangeability algorithm: part 2

23:

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:
38:
39:
40:
41:

42:
43:
44:

45:

46:
47:
48:

49:
50:
51:
52:
53:
54:
55:
56:
5T:

> Step 5. Perform on-the-fly subsumption, if a domain entity from previous step
is not linked to a ‘M;
for all entity € tO,, do
if entity not in ‘M, then
if entity has no superclasses in ‘O,, then
ancestorSet < get ancestor entities of entity from *M;
mappableSet < empty set
for all ancestor Entity € ancestorSet do
if ancestor Entity exists in O then
add ancestor Entity to mappableSet
end if
end for > get lowest level entity
selected Entity < get lowest level entity from mappableSet
mappedSelected Entity < get entity = selected Entity from *O
newAxiom < create axiom stating that entity is a subclass of
mappedSelected Entity
add newAxiom to O,,
end if
end if
end for
> Step 6. Delete source foundational ontology entities that are not referenced by
the domain entities
for all entity €'O,, do
if entity € *M; then entitySet < get referencing entities of entity
for all referencedEntity in entitySet do > if re ferenced Entity is a
domain entity
if referencedEntity not in *M;and referencedEntity not in ‘M,

then
checker + true
end if
end for
> if entity is not referenced by any domain entities
if checker == false then
if entity in 'M,; then
remove entity from *O,,
end if
end if
end if
end for
save 'O,

generate log file with metrics

110

Software Used for [= =
SU GOI! Ontology Interchangeability! | — J
hitp ffwwew thezfiles. cozalBROMUL U S/ontologylnterchange.html

How to? Input -~ Uncheck if vou do not want us to
1. Load dorrain ontology p U kesp a copy of your ontology
2. Select source and target FO

T ; 1. Load domain ontology
3. Click "Interchange
Contact 2. Source FO - Target FO_ .
Developer: 1. DOLCE to BFO (&

Fubeida C. Khan

Department of Computer Science
University of Cape Town, South Africa
and

Counci for Scientific and Industrial
Research, Pretoria, South Africa 3
email: zkhani@csir.co.za ;

Output
b 4% |
SUGOI! Progress

SUGOT! Log

Cilsers\ZKhan\interchangediOntologiesibco-DOLCE10205P M. owl
| Alogfile has been generated and is stored at:

=B I

0

-

Figure 4.9: The interface of the online desktop version of SUGOI.

DOLCE, BFO, and GFO foundational ontologies and has the mapping files
built into the tool.

3. SUGOI-FO Desktop online version: a platform independent jar file to be
executed on a local machine but requires internet connectivity. This version is
especially-designed to interchange between DOLCE, BFO, and GFO founda-
tional ontologies and has the mapping files built into the tool.

4. SUGOI-FO Desktop offline version: a platform independent jar file to be
executed on a local machine and is bundled with foundational and mapping on-
tology files. This version is especially-designed to interchange between DOLCE,
BFO, and GFO foundational ontologies and has the mapping files built into the
tool.

SUGOI was developed in Java using the OWLAPI v3.5.0 in Netbeans IDE 8.0.
The Applet of SUGOI is deployed online within any browser that has the Java TM
Platform plugin installed and activated. The desktop versions of SUGOI are platform
independent jar files together with their dependencies (all bundled together) that re-
quire minimal disk space, and Java runtime components installed. The different ver-
sion of SUGOI can be downloaded from the foundational ontology library ROMULUS
at http://www.thezfiles.co.za/ROMULUS/ontologyInterchange.html.

Fig. 4.9 is a screenshot of the online desktop version of SUGOI when interchanging
an ontology from BFO to DOLCE, and Fig. 4.10 is a screenshot of the online desktop
version of SUGOI-Gen.

111

SUGOI Software Used for B : e
Ontology Interchangeability L
Input

1. Load source maodular antalogy for

interchange 1. Load source modular ontology

2. Load source and target interchange

ontologies 2. Load source interchange module

3. Load mapping file

4. Click ‘Interchange’ 3. Load target interchange module

Contact

Developer: 4., Load mapping file

Zubeida C. Khan

Department of Computer Science 3.

g%uersiw of Cape Town, South Africa

Council for Scientific and Industrial _ o

Research, Pretoria, South Africa

email:zkhan@csir.coza

Output

SUGOI Progress = 100% |
Your ontology has been interchanged and is stored at: A
Chlsers\ZKhan\interchangediOntologies\MDMOP-bfo-1.190423AM. owl r
RAS 7 = |

A ol M

Figure 4.10: The interface of the online desktop version of SUGOI-Gen.

4.3.3 Interchangeability with modular ontologies

To investigate the interchangeability of various ontology modules, we use the gener-
alised version of SUGOI, SUGOI-Gen, since it can be used to swap any type of OWL
ontology modules. We have identified three scenarios to investigate ontology module
interchangeability which we discuss here.

4.3.3.1 Swapping foundational ontologies

For this scenario, we consider ontology modules that contain a domain component
and foundational ontology component. Since there are several foundational ontolo-
gies that have been developed, this poses problems if a heterogeneous system needs
to access ontologies that are linked to conflicting foundational ontologies. Swap-
ping a foundational ontology for another could be performed to solve this problem
of Semantic interoperability. It is also worthwhile to investigate whether swapping
its foundational ontology to an aligned foundational ontology has an impact on the
modularisation metrics, and the time taken for reasoning.

A characteristic of this scenario is that the *M;, *O, and ‘M, cover the philo-
sophical, high-level categories that are common across various domains

We provide three illustrative examples for interchanging between foundational
ontologies in Examples 25, 26, and 27. Figure 4.11 illustrates Example 25. The
source *0,, and two target 'O,, ontologies is shown for Example 26 for interchanging
the sao:Membrane Surface entity from the SAO ontology in Fig 4.12.

112

Example 25 The basic steps of the algorithm for interchanging between foundational
ontologies DOLCE to GFO are as follows, using the data mining DMOP ontology [78]
as an example:

1.
2.

Create a new ontology file, a *O,,: dmop-gfo.owl.
Copy the entire *tM; to the tO,,: copy the GFO ontology into dmop-gfo.owl.

Copy the azioms from the My to the 'O,,: e.g., consider the axioms, ax-
iom1: dmop:DecisionBoundary C dolce:abstract and axiom?2: dmop:Strategy C
dolce:Non PhysicalEndurant which exist in the *O,, DMOP. We add these ax-

ioms to the dmop-gfo.owl tO,, and they are referred to as ‘new’ axioms.

Change the ‘new’ axzioms to reference 'M; entities, if mappings exist: for ax-
toml, there is an equivalence mapping between gfo:Abstract and dolce:abstract,
hence we change axiom1 dmop:DecisionBoundary C dolce:abstract to dmop: De-
cisionBoundary C gfo:Abstract. For aziom?2, there is no equivalence mapping
between dolce:NonPhysicalEndurant and GFO entities; we skip this step.

If a mapping does not exist, perform on-the-fly subsumption: For axiom?2,
dolce:NonPhysicalEndurant has a superclass dolce:Endurant and the mapping on-
tology has dolce:endurant = gfo:Presential, so dolce:NonPhysicalEndurant C gfo:P-
resential is added to dmop-gfo.owl.

Delete entities that exist in the 'O, that are from the *M; but do not appear in
an aziom with entities from the My, resulting in the final*O,,, dmop-gfo.owl.
Delete the dolce:abstract entity from dmop-gfo.owl.

Ve

dolce:Abstract dolce:Endurant| [dolce:Endurant =gfo:Presential | | gfo:Presential gfo:Abstract

\dmop:DataType dmop:Strategy} \dmop:Strategy dmop:DataType)

(N\

~N

Source Ontology Mapping Ontology Target Ontology

dolce:NonPhy- dolce:Abstract=gfo:Abstract dolce:NonPhy-

sicalEndurant sicalEndurant

f f

Figure 4.11: Examples of interchanging the dmop:DataType and dmop:Strategy do-
main entities from *M; DOLCE to ‘M; GFO with SUGOI, using equivalence and
subsumption mappings. Source: [81]

Example 26 The basic steps of the algorithm for interchanging between foundational
ontologies BFO to DOLCE are as follows, using the Subcellular Anatomy Ontology
(SAO) [96] as an example:

1.

2.

Create a new ontology file, a 'O,,: sao-dolce.owl.

Copy the entire 'M; to the 'O,,: copy the OWLized DOLCE ontology into
sao—dolce.owl.

113

'Membrane Surface' class in sao ontology (bfo) 'Membrane Surface' class in sao ontology (interchanged gfo)

v--@ Thing
------ DependentContinuant
& continuant ¥ -= Entity
> & dependent_continuant V- Sitem
independent_continuant F--{ Category
material_entity v
object boundary ||| | Abstract
: - 'Membrane Surface’ ¥ -@Concrete
: : »--& Continuous
'Membrane Surface’ elass in sao ontology (interchanged P Dependent
dolce) b Discrete
— #--{) Independent
'.....: Thing ¥ Presential
-~ DependentContinuant & Amount_of_substrate = Mass_enti
>} 'Obsolete class’ b Configuration
v--@ particular > Discrete_presential
{0 abstract b () FiatObjectPart
¥ = spatio-temporal-particular e Mass_entity = Amount_of substrat
' ~ endurant ¥ Material_boundary
; arbitrary-sum o Material_line
non-physical-endurant ~~ Material_point
' ObjectBoundary ------ Material_surface
| ~ »-{ 'Membrane Surface’' > 'Membrane Surface'

Figure 4.12: The position of the sao:Membrane Surface class in source and target
ontologies. Source: [84].

3. Copy the axioms from the *My to the 'O,,: e.g., the ariom sao:Membrane
Surface C bfo:Object_boundary ezxists in the °O,, SAO, which is added to the
sao—-dolce.owl ‘O,, and is referred to as a ‘new’ axiom.

4. Change the ‘new’ axioms to reference ‘M, entities, if mappings exist: for the
example in the previous step, no mapping exists for bfo:Object_boundary between
BFO and DOLCE, so it proceeds to the next step.

5. If a mapping does not exist, perform on-the-fly subsumption: continuing with
the example, bfo:Object_boundary has a superclass bfo:Independent_Continuant
and the mapping ontology has bfo:Independent_Continuant = dolce:endurant, so
bfo:Object_ boundary C dolce:endurant is added to sao-dolce.owl.

6. Delete entities that exist in the 'O, that are from the *M; but do not appear in
an axiom with entities from the ' My, resulting in the final'O,,, sao—dolce.owl.

Example 27 The SEGO ontology [36] is about sensing geographical occurrences, and
it 1s linked to the DOLCE foundational ontology. Let us assume that we wish to in-
tegrate the SEGO ontology to the Infectious Disease Ontology (IDO) [28] to gain
information about the geographical occurrences of diseases. The IDO ontology, how-
ever, 1s linked to a different foundational ontology than the SEGO ontology. IDO is
linked to the BFO foundational ontology. These conflicting foundational ontologies
prevent such interoperability. In order to solve this problem, we could consider using
SUGOI-Gen to interchange the SEGO ontology from DOLCE to BFO, or to inter-
change the IDO ontology from BFO to DOLCE, provided that there are mappings

114

that have been created between DOLCE and BFO foundational ontologies. The basic
steps of the algorithm for interchanging between DOLCE to GFO as a foundational
ontology are as follows, using the SEGO ontology as an example:

1. Create a new ontology file, a 'O,,: sego-gfo.owl.

2. Copy the entire ' M, to the 'O,,: copy the GFO ontology into sego-gfo-bio.o—
wl.

3. Copy the axioms from the My to the 'O,,: e.g., consider the axioms, azioml:
sego:sensor C dolce:physical-object and axiom2: sego:geo-process C dolce:stative
which exist in the *O,, seqgo. We add these axioms to the sego-gfo.owl ‘O,
and they are referred to as ‘new’ axioms.

4. Change the ‘new’ azioms to reference 'M; entities, if mappings exist: for ax-
toml, there is an equivalence mapping between dolce:physical-object and
gfo:Material_object, hence we change axioml sego:sensor C dolce:physical-
object to sego:sensor C gfo:Material_object. For aziom?2, there is no equivalence
mapping between dolce:stative and GFO entities; we skip this step.

5. If a mapping does not exist, perform on-the-fly subsumption: For axiom?2,
dolce:stative has a superclass dolce:perdurant and the mapping ontology has dolce:
perdurant = gfo:Occurrent, so dolce:stative C gfo:Occurrent is added to sego-gf—

o.owl.

6. Delete entities that exist in the 'O,, that are from the *M; but do not appear in
an aziom with entities from the Mg, resulting in the finaltO,,, sego-gfo.owl.
Delete the dolce:physical-object entity from seo-gfo.owl.

4.3.3.2 Swapping top-domain ontologies

For this scenario, we consider ontology modules that contain a domain component and
top-domain component. A user may want to interchange the top-domain component
for another to assist with ontology integration. It is also worthwhile to investigate
whether swapping its top domain ontology to a top domain ontology has an impact
on the modularisation metrics, and the time taken for reasoning.

A characteristic of this scenario is that the M;, *O, and *M; cover the funda-
mental concepts of a particular domain.

Example 28 BioTop [13] and GFO-Bio [66] are both top-domain biological ontolo-
gies and CELDA [142] is an ontology for complex cells. CELDA imports the BioTop
ontology as a top-domain ontology. Suppose there is a set of bio-medical ontologies
that use GFO-Bio as a top-domain ontology and we wish to use CELDA in an appli-
cation together with the set of bio-medical entities. It is difficult to achieve seamless
integration because CELDA has BioTop as a top-domain component. Hence, we con-
sider interchanging CELDA’s top-domain ontology from BioTop to GFO-Bio. The
basic steps of the algorithm for interchanging between BioTop to GFO-Bio as a top-
domain ontology as an example are as follows.

115

1. Create a new ontology file, a 'O,,: CELDA-gfo-bio.owl.

2. Copy the entire *M; to the 'O,,: copy the GFO-Bio ontology into CELDA-gfo—

bio.owl.

3. Copy the awmioms from the *Mgy to the *O,,: e.g., consider the azioms, az-
tom1: celda:compound C biotop:MaterialObject and axiom2: celda:GO_008150
C biotop:bio_molecular_process which exist in the *O,, CELDA. We add these
azrioms to the CELDA-gfo-bio.owl 'O, and they are referred to as ‘new’ az-
1oms.

4. Change the ‘new’ axioms to reference 'M; entities, if mappings exist: for ax-
ioml, there is an equivalence mapping between biotop:MaterialObject and gfo-
bio:Material_object, hence we change axiom1 celda:compound C biotop:MaterialO-
bject to celda:compound C gfo-bio:Material Object. For axiom?2, there is no
equivalence mapping between biotop:bio_molecular_process and GFO entities; we
skip this step.

5. If a mapping does not exist, perform on-the-fly subsumption: For axiom?2,
biotop:bio_molecular_process has a superclass biotop:biological_processual_entity
and the mapping ontology has biotop:biological _processual_entity = gfo-bio:Biolog-
ical_process, so biotop:bio_molecular_process C gfo-bio:Biological_process is added
to CELDA-gfo-bio.owl.

6. Delete entities that exist in the 'O,, that are from the *M; but do not appear in
an aziom with entities from the Mg, resulting in the final*O,,, dmop-gfo.owl.
Delete the biotop:MaterialObject entity from CELDA-gfo-bio.owl.

4.3.3.3 Swapping an ontology for a leaner fragment the ontology

For this scenario, we consider ontology modules that contain a domain component
and an arbitrary module that has a potential alignment to a ‘leaner’ module. That
is, a particular type of fragment of an ontology, such as one represented in a language
of lower expressiveness, instead of the ‘comprehensive’ version of the ontology. A
user may want to interchange one of the modules in the set of ontologies for another
to perhaps enhance user comprehension or increase performance of the automated
reasoner, or of the ontology-driven information system. It is also worthwhile to inves-
tigate whether swapping one of its modules for a smaller version of the module has
an impact on the modularisation metrics, and the time taken for reasoning.

A characteristic of this scenario is that the interchanged modules do have an exact
overlap in content, just fewer axioms and possibly a subset of the vocabulary as well
in the ‘leaner’ version.

Example 29 In the DMOP data mining ontology [78], there is the domain ontology,
DMOP and the foundational ontology, DOLCE-Lite. Aside from this, there already
exists an EL version of the DOLCE-Lite ontology in the ROMULUS repository [88].
We could consider interchanging the DOLCE-Lite foundational ontology module for

116

the DOLCE-EL foundational ontology module to assist with faster reasoning of the
DMOP module. The basic steps of the algorithm for interchanging between DOLCE
to DOLCE-Lite in the DMOP ontology are as follows:

1. Create a new ontology file, a *O,,: dmop-dolce-el.owl.

2. Copy the entire *M; to the 'O,,: copy the dolce-el ontology into dmop-dolce—

el.owl.

3. Copy the axioms from the Mg to the 'O,,: e.g., consider the axioms, axioml:
dmop:Characteristic C dolce:abstract-quality which exists in the *O,, dmop-dolce.
We add this axiom to the dmop—dolce-el.owl 'O, and it is referred to as a
‘new’ axiom.

4. Change the ‘new’ axioms to reference 'M; entities, if mappings exist: for ax-
toml, there is an equivalence mapping between dolce:abstract-quality and dolce-
el:abstract- quality, hence we change axiom1 dmop:Characteristic C dolce:abstract-
quality to dmop:Characteristic = dolce-el:abstract-quality.

5. If a mapping does not exist, perform on-the-fly subsumption. There are map-
pings for every DOLCE to DOLCE-EL entity hence we skip this step.

6. Delete entities that exist in the 'O, that are from the *M; but do not appear in
an axiom with entities from the *My, resulting in the final *O,,, dmop-dolce-
el.owl. Delete the dolce:abstract-quality entity from dmop-dolce-el.owl.

4.3.3.4 Swapping aligned ontology design patterns

For this scenario, we consider ontology modules that contain a domain component
and an ontology pattern module that has a potential alignment. It is worthwhile
to investigate whether swapping the pattern for its aligned pattern has an impact
on the modularisation metrics. For instance, consider the class vs. object property,
which can also be found as issue in conceptual modelling: e.g., should ‘marriage’ be
a class Marriage with a number of persons participating in it, or a relationship/object
property married-to, i.e., to reify a relationship or not. Or the modelling approach of
subsumption vs. inherence: e.g., for a library ontology, take the knowledge ‘Librarian
inheres in some Person’, or: social objects are related to physical objects through
an inheresIn object property (Librarian = JinheresIn.Person), yet an ontology developer
wishes to use this knowledge in a database for a library system, for which an assertion
of ‘Librarian isA Person’ (Librarian C Person) is much more efficient. Hence, the
instantiation of an ontology pattern—i.e., involving more than one element—in the
library ontology has to be swapped for the simple named class subsumption. Five
such types of patterns are aligned in [41], and there are surely more variants.

A characteristic of this scenario is that the ontology patterns are not necessarily of
equal size and may use different language features, such as simple class subsumption
vs. existential quantification. The overall effect on ontology metrics for one pattern

117

interchange is not expected to have an impact, but it will if this were to be done
throughout an ontology for each such instance.

In the next section, we will investigate ontology interchangeability with modules
for these scenarios.

4.3.4 Experimental Evaluation

We now perform an experimental evaluation with a set of modules using SUGOI-Gen.

The first purpose of the experimental evaluation is to investigate the interchange-
ability of modules for the identified scenarios to determine how well the algorithm for
interchangeability performs. For this, we assess whether SUGOI-Gen can successfully
interchange a *O,, to a ‘O,, and determine the amount of the ontology that will be
effectively interchanged, which refers to those entities within the ‘M, that have been
mapped with equivalence relations, thereby not required to use parts of the *M; in
the ‘O,,. Second, we assess the source and target modules to determine the effects
that interchangeability may have on a modular ontology in terms of the module’s
metrics and reasoning processing.

4.3.4.1 Materials and methods

The assessment has been designed using the three of the four scenarios for module
interchangeability, i.e., swapping foundational ontologies, swapping top-domain on-
tologies, and swapping an ontology for a leaner version of it. The method for the
experiment is as follows:

1. Collect module sets from existing works for each of the three scenarios.
2. Create a mapping ontology file for each module set.

3. Interchange the Source Modular Ontology (*O,,) to a Target Modular Ontology
(*Om).

4. Analyse the raw interchangeability of each 'O,,, i.e., a measure to determine
the amount of the 'Q,, that has been correctly interchanged using equivalence
mappings thereby not referring to the *M; entities. This is calculated from the
tO,, as follows: Let GT, good target linking axioms, represent the sum of axioms
that link domain ontology entities and M, entities in the ‘O,,. Let BT, bad
target linking axioms, represent the sum of axioms that link domain ontology
entities and * M, entities in the ‘O,,; the raw interchangeability is calculated as
follows:

|GT|

% 100 4.19
|GT + BT| (4.19)

Raw interchangeability =

5. Compare the time taken for reasoning for the *0,, against the ‘O,),.
6. Run the TOMM metrics tool for the *O,, and the t0,,, module sets.

7. Analyse and compare the metrics for the *0,, and ‘O,, module sets.

118

¥ owl:Thing

----- = endurant = IndependentContinuant
----- = IndependentContinuant = endurant
----- = MaterialEntity = physical-endurant
----- = Object = physical-object

----- = Occurrent = perdurant

----- = perdurant = Occurrent

----- = physical-endurant = MaterialEntity
----- = physical-object = Object

----- Process = process

----- process = Process

----- Quality = quality

----- quality = Quality

----- space-region = SpatialRegion

B SpatialRegion = space-region

Figure 4.13: The mapping file showing alignments for classes between DOLCE and
BFO foundational ontologies.

The materials consist of six *0,,, that were randomly selected from existing ontol-
ogy modules. For the six *O,,, two were from each scenario, covering domains about
animals, space and time, anatomy, cells, etc. We used the SUGOI-Gen interchange-
ability tool and TOMM metrics tool.

The materials consist of six *O,,, two from each scenarios, covering domains about
animals, space and time, anatomy, cells, etc., mapping files created for each *M;
to *tM; alignment created with Logmap [72] and manually, the SUGOI-Gen inter-
changeability tool, and TOMM metrics tool [87] as it generates evaluation met-
rics to measure the quality of a module. The mapping files that were used for
the foundational ontology modules were manually created for previous experiments
[81], and for the rest of the modules, we used Logmap to create them. A map-
ping file for the alignment between BioTop and GFO-Bio is shown in Figure 4.13.
All the test files used for this experimental evaluation can be downloaded from
www.thezfiles.co.za/ROMULUS/testfiles.zip.

4.3.4.2 Results

All of the modules were successfully interchanged with SUGOI-Gen. To determine
how the effective swapping the various modules were, we first look at the interchange-
ability values that were calculated with the SUGOI-Gen tool, displayed in Table 4.14.
For the first set of modules, for interchanging foundational ontologies, the raw in-
terchangeability values were between 25-28%; i.e., about a quarter of the *O,, was
successfully interchanged completely. This is because there are only 15 mappings that
exist between DOLCE and GFO, and 7 between DOLCE and BFO, in the respective
mapping files. The remaining 75% of the foundational ontology modules that were not
successfully interchanged are represented by the BT values in the raw interchangeabil-
ity formula. These are the axioms that link domain ontology entities to * M, entities in
the 'O,,,. For instance, the axiom ontoderm:DermDiseaseType C dolce:abstract-quality

119

Table 4.14: A comparison of the *0,, and ‘O,, for the raw interchangeability and

reasoning.
Source and M,y to Domain | Raw Reasoning
target ontologies *M; links| entities | interchangeability | time (s)
Interchange a foundational ontology for another
naive_animal-dolce 43 438 75
naive_animal-gfo 452 25.58% 146
ontoderm-dolce 14 301 19
ontoderm-bfo 308 28.57% 0.5
Interchange a module for a leaner module
sceneOntology-dolce | 18 246 0.9
sceneOntology-dolce-el 246 100% 0.5
sao-bfo 66 809 0.7
sao-bfo-continuant 809 100% 0.4
Interchange a top-domain ontology for another
umlssn-biotop 311 714 300
umlssn-gfo-bio 863 22.18% 0.3
dco-biotop 399 1446 1832
dco-gfo-bio 1650 24.06% 0.2

containing an entity from the DOLCE *Q,, exists in the ontoderm-bfo module.

For the next set of modules, for interchanging a module for a leaner module,
both ontologies had a raw interchangeability of 100%; the ontologies were able to be
completely interchanged because there were mappings between the *M; and ‘M, for
all entities. DOLCE and DOLCE-EL have the same entities, and BFO and BFO-
Continuant also have the same entities, so they were all mapped.

Lastly, for the set of modules for interchanging top-domain modules, they had a
raw interchangeability of between 22-24%. They were 28 mappings available between
the top-domain ontologies, BioTop and GFO-Bio but the * M, to *M; links were high,
311 and 399 for the umlssn and dco top-domain ontologies, causing the lower raw
interchangeability values. Thus, for all ontologies in the set, some interchangeability
can be achieved using SUGOI-Gen.

Comparing the number of domain entities in the *0,, and 'O,,, we note that
there are extra domain entities in the ‘0,,. This is because a number of *M; en-
tities have been added to the ‘OQ,, when on-the-fly subsumption occurs (recall the
biotop:bio_molecular_process entity that is added to the CELDA 'O,, in Figure 4.11).
Next, we analyse the reasoning for the modules. All of the interchanged modules
except the naive_animal have an improved time taken for reasoning after inter-
changeability (see Table 4.15). In some cases, the improvement is considerable such
as the case of umlssn-biotop where the interchanged ontology has a reasoning time
of just 0.3 seconds compared to the source ontology that has a reasoning time of 5
minutes. Another case is the dco interchanged ontology with a reasoning time of 0.2
seconds compared to the source ontology that has a reasoning time of 30.5 minutes.

120

Table 4.15: The metrics for the *0,, and tO,, ontologies; Coh. = cohesion, AR =
attribute richness, IR = inheritance richness, IMD = Intra-module distance.

Source and g | Atomic| No. of |y Gon AR IR
target ontologies size axioms

Interchange a foundational ontology for another foundational ontology
naive_animal-dolce | 545 | 6.82 3085 186156 | 0.017 | 2.62 | 3.1
naive_animal-gfo 598 | 6.26 3104 292913 | 0.02 |2.37] 3.19
ontoderm-dolce 408 | 5.14 1470 313977 | 0.04 | 0.76 | 3.16
ontoderm-bfo 347 | 4.42 1217 345117 | 0.06 | 0.51 | 3.31
Interchange a module for a leaner module

sceneOntology-dolce | 353 | 5.57 1298 150432 | 0.04 | 1.09 | 4.53
fgfneont‘)logy'ddce 353 | 5.13 1221 | 151118 | 0.04 |0.89 | 4.34
sao-bfo 848 | 7.82 8037 2108127 | 0.04 | 0.45 | 2.9
sao-bfo-continuant 830 | 7.86 7931 1990462 | 0.04 | 0.46 | 2.9
Interchange a top-domain ontology for another top-domain ontology
umlssn-biotop 1119 | 7.56 5795 4664881 | 0.04 | 2.97 | 4.00
umlssn-gfo-bio 1105 | 7.10 5360 3262657 | 0.04 | 2.57 | 4.39
dco-biotop 1851 | 4.52 8925 297579 | 0.005 | 1.42 | 3.21
dco-gfo-bio 1802 | 4.11 8470 383592 | 0.006 | 1.09 | 3.13

We now inspect the ontologies to assess whether interchangeability has an effect
on the modularity metrics by comparing the *O,, metrics to the ‘O,, metrics. The
metrics are presented in Table 4.15. For modularity, since Definition 6 from Sec-
tion 3.1 states that “A Module M is a subset of a source ontology O, M C O, either
by abstraction, removal or decomposition...”, smaller metrics indicate a favourable
module. When interchanging a foundational ontology for another foundational ontol-
ogy, as in the naive_animal and ontoderm ontologies, this could cause an increase
or decrease in the metrics for the module. For the naive_animal ontology, all the
numerical metrics had increased except the atomic size and the attribute richness
because the GFO module is larger than the DOLCE module. For the ontoderm on-
tology, when interchanging from DOLCE to BFO, conversely most of the numerical
metrics had decreased, except the intra-module distance and cohesion; thus the met-
rics had improved for modularity. Interchanging a module for a leaner module should
results in improved metrics for modularity.

For the SsceneOntology, after the interchange, the atomic size, number of axioms,
attribute richness, and inheritance richness has decreased. However, the intra-module
distance has increased, meaning that the entities moved further apart due to the
removal of some of the relations between classes. A larger intra-module distance might
promote tool processing since the ontology module would have fewer relations, be less-
expressive and have a smaller number of axioms while a smaller intra-module distance
means that the classes are closer together and easier to traverse through and this
might promote human understanding. For the SA0 ontology, after the interchange,

121

all the metrics have decreased except the atomic size and the attribute richness. This
is because the number of classes has decreased in the module, but the number of data
properties are the same. For the next use-case, interchanging a top-domain ontology
for another top-domain ontology, there is a decrease in all the metrics except the
inheritance richness value meaning that the target ontology has a higher number
of subclasses per class than the source ontology. Hence interchanging top-domain
modules for the set in question is indeed favourable.

We now return to the questions regarding interchangeability posed at the onset
of the section.

1. If O4 is linked to a module Oy, is it feasible to interchange it to be linked to a
different module Oy?
It is feasible to interchange a module within an ontology for another module.
However, the success of the interchangeability depends on the number of map-
pings that are available between the source and target modules

2. Does interchanging ontology O4 between Ox and Oy have an impact on the
quality of the modules in the set?
Interchangeability does have an impact on the metrics, depending on whether
the module that has been interchanged is smaller or larger (DOLCE vs. GFO),
more-expressive or less- expressive (DOLCE vs. DOLCE-EL), etc., this could
impact certain module metrics, and the ontology developer may consider inter-
changeability to assess which module is the best fit for an application.

3. Does interchanging ontology O4 between Ox and Oy have an impact on the
time taken for reasoning?
The interchangeability has a significant impact on the time taken for reasoning.
A comparison of the reasoning times for the source and target modules reveals
that, for the set of modules used in this experiment, the reasoning times were
greatly improved.

The investigation of ontology interchangeability for ontology modules that we
conducted revealed that we can successfully and automatically interchange modules
within a system, thanks to the SUGOI-Gen tool. The experiment with SUGOI-Gen
reveals that interchanging modules with SUGOI-Gen could have a positive impact on
the modularisation metrics and reasoning processing times of a module and that it
could aid the user in selecting the best candidate module for a use-case.

4.4 Ontology modularisation techniques

In Section 2.6, the techniques for modularisation that were discussed include traver-
sal, graph partitioning, locality-based, abstraction, and expressiveness. From the
summary of existing techniques for modularity we note that: 1) the abstraction tech-
niques have no tool support at present, and some of the abstraction techniques are
tailored towards conceptual data modules and not ontologies, and 2) there is lim-
ited tool support for language simplification techniques whereby OWL EL profile

122

modules can be generated using Protégé v4.3 [110]. In Section 3.6.2.3, from the clas-
sification of ontology modules, it was found that tool-based support is lacking for
generating various module types. To solve this problem of insufficient tools to au-
tomatically generate modules, we have formalised various definitions for abstraction
and expressiveness with regard to modularity, designed new algorithms, and devel-
oped the Novel Ontology Modularisation SoftwAre (NOMSA). NOMSA implements
five new algorithms to automatically generate modules. In the remainder of this
Section, we first introduce the five algorithms of NOMSA. This is followed by illus-
trative examples demonstrating how the algorithms work, and the implementation of
the NOMSA and comparison with other modularisation tools. NOMSA is then ex-
perimentally evaluated with a set of ontologies to create modules, and the resultant
modules are evaluated. The work in this section has been submitted for publication

already [83].

4.4.1 New modularisation algorithms

In this section, we present five new algorithms which cover the semantic-based ab-
straction and language simplification techniques to generate modules of the follow-
ing types: axiom abstraction, entity type abstraction, high-level abstraction, and
weighted abstraction (T9-T12), and feature expressiveness (T14).

Axiom abstraction Axiom abstraction generates a module without complex rela-
tions between entities; therefore, the technique decreases the horizontal structure of
the ontology and make it a bare taxonomy. Axiom abstraction is formally defined as
follows:

Definition 7 (Axiom Abstraction) Let O, O’ be two ontologies, S = {av, ..., oy}
a set of axioms involving at least two classes or a class and a data type, and either
at least one object property or data property from O (i.e., GCIs). We say that O is
an axiom abstraction module of O, if O'US = O such that there exists no element

of S in O (ie., SNO =10), hence, O’ C O.

Algorithm 3 (AxAbs) generates axiom abstraction modules. For instance, if
Professor C Jteaches.Course is an axiom in O and this axiom is in set S (as it is not
a simple subsumption between named classes nor is it a declaration of the Professor
class; line 4 of AxAbs), then the axiom will be removed (lines 8-10) resulting in
module O that will contain only the classes Professor and Course.

Vocabulary abstraction Applying this abstraction to an ontology generates a
module where a certain vocabulary element is removed from the ontology. Vocabulary
abstraction is formally defined as follows:

Definition 8 (Vocabulary abstraction) Let O, O be two ontologies, C = {C1, ...,

Cr} the set of classes in O, OP = {OPy,...,OF;} the set of object properties in O,
and DP = {DPy, ..., DP.} the set of data properties in O. We say that O is a

123

Algorithm 3 Axiom abstraction to compute module M from an ontology O (AxAbs).

1: Input Ontology O
2: Output Module M
3: for all axiom € O do

4: if axiom.type == subclass_axiom or axiom.type == declaration_axiom
then

5: cExpression < axiom.get NestedClassExpressions()

6: cEzxpressionSet < cExpressionSet + cExpression > cExpressionSet is
a data structure where we store all the class expressions

7: for all cExpression € cExpressionSet do

8: if cExpression.type # class then

9: remove ariom

10: end if

11: end for

12: else

13: remove ariom

14: end if

15: end for

16: M < O

vocabulary abstraction module of O, if O'"UC = O or O'UOP =0 or O'UDP = 0O
such that there exists no element of C, OP, or DP in O’ (i.e., CNO" =0, OPNO’ =0,
DPNO =0), hence, O’ C O.

Algorithm 4 Vocabulary abstraction to compute module M from an ontology O
(VocAbs).
1: Input Ontology O, Entity e, EntityType t > e is a named class, object property,
or data property and t is the type of e in O
Output Module M
if t == class then
remove e
else if t == object property then
remove e
else if t == data property then
remove e
else if t == individual then
remove e
: end if
: M+ O

ol

Algorithm 4 (VocAbs) generates vocabulary abstraction modules. For instance,
consider the Subcellular Anatomy Ontology (SAO) domain ontology that is linked
to the BFO foundational ontology, but the developers want to change that to the

124

DOLCE foundational ontology. Since the domain ontology does not contain any
object properties, one could be interested in removing the object properties from
the DOLCE-aligned version of the SAO ontology using the vocabulary abstraction
algorithm.

High-level abstraction High-level abstraction generates a module where entities
at a higher level are regarded more important than others. High-level abstraction is
formally defined as follows, specifying the notion of depth in a taxonomy first:

Definition 9 (Depth) Let O be an ontology. A depth in the hierarchy of O represents
the subclass distance between the hierarchy’s top-level entity and a given entity, e.g.,
depth 1 refers only to the top-level classes, depth 2 refers to the top 2 layers of classes
(the parent classes and its direct subclasses) and so on.

Definition 10 (High-level abstraction) Let O, O’ be two ontologies, n be a depth
where n 1s an integer > 1. We say that O’ is a High-level abstraction of O, if the
entities with a depth > n are removed, hence, O C O.

Algorithm 5 (HLAbs) generates high-level abstraction modules. For instance, in
the ROMULUS repository [88], the GFO-abstract-top module of the GFO ontology
is based on the Abstract Top Level layer of GFO which contains mainly two meta-
categories: set and item. To generate this module automatically, one could use HLAbs
with the GFO ontology and set the depth as 2 (see Figure 4.14).

¥ @ owl:Thing
Depth 1——¥- < Entity
Depth 2 ¥ © Item
¥--© Category

- I Concept

Ontological_layer
Symbol_structure
Universal

Remove entities

= i :
depth 2 in box » Abstract

Concrete
Continuous
Dependent
Discrete
Independent
Presential

- @ Relator
p- 0 Space_time

Depth 2

Figure 4.14: Generating a high-level abstraction module with depth = 2 from the
GFO ontology.

125

Weighted abstraction Weighted abstraction deals with removing entities from
an ontology that are deemed less important than others by assigning weight to the
classes, properties, and individuals in an ontology. Our approach for determining
entities that are more important than others is based on looking at entities that
other entities are highly dependent on. For instance, in the pizza ontology, the class
TomatoTopping is the most widely used, being referenced 61 times by other entities.
Weighted abstraction is formally defined in Definition 13, availing of the notions of
relative and absolute thresholds:

Algorithm 5 High-level abstraction to compute module M from an ontology O
(HLADs).
1: Input Ontology O, LevelNumber

2: Output Module M
3: oldSet + ontology.get Axioms()
4: for all class € O do
5: if class.superclasses() is empty then
6: topLevelClassSet < topLevelClassSet + class
7: end if
8: end for
9: counter < 0
10: while counter # level Number do
11: for all topclass € topLevelClassSet do
12: newset <— newset + topclass.get Axioms()
13: if topclass.subclasses() # empty then
14: temp < topclass.subclasses()
15: end if
> Repeat lines 3 - 13 for object properties, data properties, and instances.
16: topLevelClassSet.clear()
17: topLevelClassSet <— temp
18: end for

19: end while

20: for all axiom € oldAxioms do

21: if newAxioms does not contain axiom then
22: ontology.remove(axiom)

23: end if

24: end for

25: M + O

Definition 11 (Relative threshold) Let O be an ontology, € = {&1,...,E} be the set
classes, object properties, data properties, and individuals in O. A Relative threshold
0 is a percentage value to decide which elements of £ are to be removed from O. FEach
element of £ is weighted according to the number of axioms it participates in and
ordered according to a position p. If p(&;) < 0.|0|, &; is removed from O.

126

Definition 12 (Absolute threshold) Let O be an ontology, € = {&i,...,E} be the
set classes, object properties, data properties, and individuals in O. An Absolute
threshold 6 is a numerical value to decide which elements of £ are to be removed from
O. FEach element of € is weighted according to the number of axioms it participates
in and ordered according to a position p, If p(&;) < 0, &; is removed from O.

Definition 13 (Weighted abstraction) Let O, O be two ontologies, € = {&1, ..., Ex}
be the set classes, object properties, data properties, and individuals in O. We say that
O’ is a Weighted abstraction of O, if elements of £ are removed from O according
to some Absolute threshold or Relative threshold, hence, O' C O.

Algorithm 6 (WeiAbs) generates weighted abstraction modules. For instance, con-
sider modularising the BioTop ontology [14] using the weighted abstraction algorithm
with # = 4. For the class Phosphate, it has two referencing axioms: a declaration ax-
iom and the axiom Phosphate C InorganicMolecularEntity. Since the number of refer-
encing axioms (p(€) = 2) is less than the absolute threshold value (4), the Phosphate
class is removed from the ontology.

Algorithm 6 Weighted abstraction to compute module M from an ontology O
(WeiAbs).
1: Input Ontology O, thresholdPercentage, Weight_array, Class_array

2: Output Module M

3: 1+ 0

4: for all class € O do

5: Weight_array < Num_of referencing_axioms
6: Class_array(i) < class

7 141+ 1

8: end for

9:

Sort(Weight_array,Class_array) > Sort Weight_array from low to high, with

Class_array corresponding to Weight_array

10: limit < thresholdPercentage * |Class_array|

11: for ¢ < 0, ltmit do

12: remove Class_array(i) from O

13: end for > repeat lines 4-12 for ObjectProperty_array, DataProperty_array,
Individual_array

14: M+ O

Feature expressiveness Feature expressiveness modules deal with removing some
axioms of the ontology based on the language features, e.g., cardinality constraints,
disjointness, object property features etc. By manipulating complex constructs of the
ontology language features, the feature expressiveness algorithm results in a simplified
model of the ontology. We have designed 7 rules for this. The algorithm takes
these 7 rules, and removes them, from the least important to the most important.
At each rule removal, a ‘layer’ of the ontology is produced where that ontology is

127

represented in a language of lower expressivity than the previous layer. Once the
algorithm is complete, seven modules (layers) are produced, each having a lower
level of expressivity than the previous. Feature expressiveness is formally defined as
follows:

Definition 14 (Feature expressiveness) Let O, O be two ontologies, R = {R1, ..., Rx}
a set of rules describing various OWL language features. We say that O is a Feature
expressiveness of O, if we remove axioms that follow R from O, hence O' C O

Rules with higher values are deemed more important than others, so the rules with
the lower levels are applied first to remove those less-important entities. We decided
to assign lower points to those OWL ontology features that serve to restrict and
refine entities such as cardinality, domain and range, and property characteristics. We
assign higher points to disjointness, equality and inequality, and complex classes since
they can be used in conjunction to define new classes. This is, in a way, subjective
and motivated by the modelling perspective on language features. It is conceivable,
and possible if desired, to assign different weights to them; e.g., such that they are
motivated by, and aligned with, the various OWL profiles.

In the notation of the rules that follow, we use the usual Description Logics nota-
tion, and we assume a Semantic Web context with ontologies represented in at most
OWL 2 DL. The classes C, D, E are concept descriptions, which could be simple
(named classes) or complex, R, S object properties, U,V data properties, and a,b, ¢
individuals in the vocabulary of the ontology, with n a non-negative integer, and all
declared knowledge adheres to the OWL 2 DL syntax.

R1: Qualified cardinality Cardinality allows one to specify the number of indi-
viduals that will be involved in an interaction between a class and an object or data
property. We weigh cardinality in an ontology with 1 point. Rules: Remove axioms
of the following axiom patterns, if present:

CC<nRD CC<nUD
CC>nR.D cCcC>nUD
CC=nRD CC=nUD

R2: Domain and range Domain and range relate an object property to a class by
restricting that the object property must belong to a certain class. We weigh domain
and range with 2 points. Rule: Remove axioms of the following axiom patterns, if
present:

JRTLCC

TCVR C

R3: Property characteristics Object property characteristics are used to further
refine object properties with logical features. We weigh property characteristics with 3
points. Rule: Remove axioms of the following axiom patterns, if present (in SROZQ’s
shorthand notation):

128

Func(R) Trans(R)
Func(R™)

Sym°< ?) Ref(R)
Asym(R) Irr(R)

R4: Disjointness Class disjointness in an ontology means that the classes cannot
have any instances that are the same. We weigh it with 4 points.

Rule: Remove axioms of the following axiom patterns, if present

cnbC L

CC-D

R5: Assertions Assertions are used to describe individuals in an ontology by
asserting membership to a class, data property, or object property. We weigh it with
5 points. Rule: Remove axioms of the following axiom patterns, if present:

a: C

R(a,b)

Ula,c)

R6: Equivalence and equality Equivalence can be asserted for classes and prop-
erties, and (in)equality can be asserted for individuals. We weigh equality and in-
equality in ontologies with 6 points. Rule: Remove axioms of the following axiom
patterns, if present:

C=D a=2»
R=S aF#b
=YV

R7: Complex classes Complex classes are used when a class is defined or de-
scribed using a combination of named classes, object properties, and data properties.
We weigh complex classes as the most important of the seven rules, 7 points. Rule:
Remove axioms of the following axiom patterns, if present:

CCDME CCDUE

C=DNE C=DUE

Algorithm 7 (FeatExp) uses these seven rules to generate feature expressiveness
modules. For instance, when modularising the Koala ontology, for rule 1 concerning
cardinality, the axiom Animal C < 1 hasGender. T is removed, whilst keeping Animal
and hasGender in the ontology.

Finally, note that the algorithms are linear for AxAbs, VocAbs, and WeiAbs, and
quadratic for HLAbs and FeatExp.

4.4.2 Tllustration of the algorithms

We now illustrate the algorithms introduced in the previous section with a sample
ontology, where we focus on the WeiAbs and FeatExp algorithms. Consider the

129

Algorithm 7 Feature Expressiveness to compute module M from an ontology O
(FeatExp).

1: Input Ontology O, ruleSet {ry,..r;}
Output Module moduleSet {M;,..M;}
141
for all axiom € O do
for all r; € ruleSet do
if axiom.type is r; then
remove ariom
end if
end for
M; < O
141+1
: end for

— = =
NP2

following axioms in a toy Burger ontology in Figure 4.15 (entity declaration axioms
omitted). The complete Burger ontology with declarations in OWL functional syntax
is shown in Appendix B.

4.4.2.1 Weighted abstraction module

To generate a weighted abstraction module, we apply WeiAbs. Let us assume we
wish to create a module whereby we remove 25% of the entities. To achieve this, we
set the threshold value to 25%. First, we apply lines 4-8 of WeiAbs, where we weigh
each class in the ontology with its number of referencing axioms, and we store both
the number of referencing axioms and each class in two arrays with corresponding
indices. For line 9 of the algorithm, we sort the weight array values from low to high
and the class array such that it matches the weight array. In line 10, a limit variable is
calculated as the product of the threshold percentage (.25) and the number of classes
in the ontology (21) which is rounded off to a value of 5. In lines 11-13, the classes
with the 5 lowest values are removed, as displayed in Table 4.16. The classes in bold
font are the 25% of the classes that are deemed less-important than the rest and are
to be removed due to having the least number of referencing axioms in the ontology.

Table 4.16: The classes of the burger ontology with the number of referencing axioms.
Those in bold font are the classes to be removed for the resulting module.

WhiteBun 2 Medium 3 Patty 4
Customer 2 Lettuce 3 BeefBurger 4
Cheese 2 HealthyBurger 3 BurgerBun 4
Sauce 2 BeefPatty 3 Hamburger 4
Chef 2 Tomato 3 Filling 5
WholeWheatBun | 2 WellDone 3 PattyCook 6
Person 3 Rare 3 Burger 7

130

—

BeefPatty C Patty WellDone C PattyCook

(0
Beefburger = HamBurger (2) WhiteBun C BurgerBun
Beefburger C Burger (3) WholeWheatBun C BurgerBun
Cheapburger C < 1 hasFilling.Filling (4) WholeWheatBun = —WhiteBun
Cheapburger C Burger (5) Func(hasBun)
Cheese L Filling (6) 3 hasBun.T C Burger
Chef C Person (7) T LC VhasBun.BurgerBun
Customer C Person (B) 3 hasPatty. T C Burger
HamBurger = Beefburger (9) T C VhasPatty.Patty
HamBurger C Burger (10) 3 hasPattyCook. T C Patty
HealthyBurger C hasFilling.(Lettuce LI Tomato) (11) T C VhasPattyCook.PattyCook
HealthyBurger C Burger (12) MarthasBurger Z MyBurger
Lettuce C Filling (13) MarthasBurger : Burger
Medium C PattyCook (14) MyBurger : Beefburger
PattyCook = Medium LI Rare LI WellDone (15) MyBurger : Burger
Rare C PattyCook (16) MyBurger : Beefburger
Sauce C Filling (17) ChefRose : Chef
Tomato L Filling (18) cookedBy (MyBurger, ChefRose)

Figure 4.15: The burger ontology to which the algorithms are applied; see text for

details.

4.4.2.2 Expressiveness feature module scenario

For the expressiveness feature module, each rule is applied according to the order in
FeatExp. For each axiom in the ontology, lines 4-9 of the algorithm are executed,

therefore each rule is applied as follows.

e R1: Cardinality: Applying this rule results in the removal of Axiom 4 from the

burger ontology.

e R2: Domain and range Applying this rule results in the removal of Axioms 24-

29.

e R3: Property characteristics: Applying this rule results in the removal of Ax-

iom 23.

e R4: Disjointness: Applying this rule results in the removal of Axiom 22.

e R5: Assertions: Applying this rule results in the removal of Axioms 31-36.

e R6: Equivalence and equality: Applying this rule results in the removal of

Axioms 2, 9, 15, and 30.

e R7: Complex classes: Applying this rule results in the removal of Axiom 11.

The resulting ontology module is simpler, having 16 logical axioms (compared to
the original 32 logical axioms). All of the classes, properties, and individuals of the
original ontology are preserved in the module; however, the hierarchy of entities differ
from that of the original ontology since some language features are no longer present.

131

4.4.3 NOMSA Modularisation tool

From the existing literature on modularisation described in Section 2.6, most of the
tools that exist are partitioning tools and modularisation tools that create locality-
based and query-based modules. Techniques have been described for abstraction
but there are no software tools to apply them to ontologies, and there are limited
techniques for language simplification. Furthermore, in the classification experiment
of modules in Section 3.6, it was found that there was a heavy reliance on using
manual methods for module creation and that it may be possible to automate some
of these techniques.

2] ——— el
Steps
N 0 M SA A Load the ontology vou wish to modularise
B. Select a method from 1-5
Maovel Ontology C. Modularise
Modularisation
Soflwire
A. |_ load ontology | C. l maodularise
I_J 1. Axiom abstraction | 3. High-level abstraction 3 levels
I| B. () 2 Entity type abstraction (®) 4. Weighted abstraction
Tick to remave | Explainthreshold values |
|_J) Threshold (absolute) il axioms
(®) Threshold (relative) gy o
| B. Feature expressiveness
Loaded module: DOLCE-Lite.owl
Success
Module saved to: Cillsers\ZKhan/modularised/DOLCE-Lite. owl-module. OWL

Figure 4.16: The interface of NOMSA.

We have designed new algorithms for modularisation techniques that were lack-
ing and implemented them in NOMSA. NOMSA can be used to modularise ontolo-
gies using abstraction and expressiveness algorithms. NOMSA allows the user to
upload an ontology (including its imports), and select one of five approaches (Ax-
Abs, VocAbs, HLAbs, WeiAbs, or FeatExp) to modularise it. A module is then
generated. NOMSA is a stand-alone Java application and can be downloaded from
http://www.thezfiles.co.za/modularisation. A screenshot of the inter-
face of NOMSA is displayed in Figure 4.16.

132

4.4.4 Experimental evaluation

The purpose of the experiment is to evaluate all the algorithms implemented in
NOMSA to check if it performs modularisation on a set of ontologies, and how well
it modularises, i.e., the quality of the generated modules. We use the default pa-
rameters for all the algorithms as shown in Figure 4.16. We evaluate NOMSA in
two ways. First, we compare its features to existing modularisation tools. Then we
evaluate NOMSA’s modules by analysing their evaluation metrics, e.g., relative size,
intra-module distance, etc.

4.4.4.1 Materials and methods

The method for the experiment is as follows:
1. Take a set of ontologies.

2. Run each modularisation tool’s algorithm with a subset of 10 randomly se-
lected ontologies from the test files to compare its features to NOMSA: level of
interaction, algorithm complexity, technique, and time taken for processing.

3. Run the NOMSA tool for each ontology from the test files for all five algorithms.

4. Run the Tool for Ontology Module Metrics (TOMM) for NOMSA’s modules to
acquire evaluation metrics for the modules.

5. Conduct an analysis from the evaluation metrics for each module.

The materials used for the experiment were as follows: Protégé v4.3 [110], SWOOP
(73], OWL module extractor [30], PROMPT [113], PATO [149], TaxoPart [58], NOMSA
tool using the default parameters for all algorithms, TOMM metrics tool, and a set
of 114 ontologies. The set of 114 ontologies were from various domains, and ex-
tracted from a set of 338 ontologies described elsewhere [49]. The first 114 ontologies
from the initial set were selected to be used for our tests. Our tests were conducted
on a 3.00 GHz Intel Core 2 Duo PC with 4 GB of memory running Windows 7
Enterprise. All the test files are available at http://www.thezfiles.co.za/
modularisation.

4.4.4.2 Results

The results of comparing NOMSA'’s algorithm features to the existing modularisation
tools are shown in Table 4.17. For most of the features, NOMSA performs as well as
or better than the other tools, with the benefit of full automation of the process. For
the level of interaction, NOMSA is automatic. NOMSA includes the most number
of algorithms in a tool (five) compared to the other tools. For techniques, NOMSA
used semantic-based abstraction and language simplification techniques; semantic-
based abstraction has not been applied in other tools to-date. NOMSA’s algorithms
have a processing time of between 2-4 seconds for modularisation for the set of 114

133

Table 4.17: A comparison of three features of several modularisation tools against
NOMSA and the average running times of the respective algorithms for the test set
of ontologies (excluding the time of manual modularisation tasks such as loading the
ontology and setting the parameters).

Level of Algorithm . Time
. . . Technique
interaction | complexity (seconds)
SWOOP semi- . .
Algorithm 1 | automatic quadratic locality-based 1
SWOOP . . .
Algorithm 2 automatic quadratic graph-partition 6
L 1 i- . .
OWL module | semi . quadratic locality-based 1
extractor automatic
PROMPT Hser unknown query-based]
driven
PATO automatic unknown graph-partition 16
Protégé semi- .
Algorithm 1 | antomatic unknown locality-based 1
Protégé .
Algorithm 2 automatic unknown language-based 1
Protégé semi- :
Algorithm 3 | antomatic unknown locality-based 1
Protégé semi-
Algorithm 4 | automatic unknown language-based 1
TaxoPart automatic linear graph-partition 15
NOMSA automatic linear semantic- 3
AxAbs based abstraction
NOMSA automatic linear semantic- 2
VocAbs based abstraction
NOMSA automatic uadratic semantic- 2
HLADbs d based abstraction
NOMSA automatic linear semantic- 4
WeiAbs based abstraction
NOMSA) .
FeatExp automatic quadratic language-based 3

134

ontologies. The locality-based algorithms have the quickest time (1 second) while
partitioning algorithms take longer (6-16 seconds).

The other tools also require the user to manually save the modules after module
generation, while this is done automatically with NOMSA and is included in the time
taken. It was not possible to test PROMPT for time taken because it was completely
user-driven. We do not compare the resultant modules of the other modularisation
tools because they all generate different types of modules and their underlying tech-
niques differ.Some of the require an input seed entity for generation (SWOOP [73]
and OWL module extractor [30]), others are heavily user-driven (PROMPT [113]
and Protégé [110]), and others generate a set of partition modules (PATO [149] and
TaxoPart [58]).

Concerning the quality of the NOMSA-generated modules, all 114 ontologies were
successfully modularised using all five algorithms in NOMSA, and their metrics were
generated using the TOMM module metrics tool. The metrics for the modules are
displayed in Table 4.18 and we discuss the notable metrics here.

This means that the entities in the module are to that degree closer than in the
original ontology. The rest of the algorithms have values less than 1, meaning that the
entities are to that degree further away than in the original ontology. For instance,
removing axioms that describe equality between classes simplifies the expressivity of
the module for easier tool processing, but increases the distance between classes.

The average time taken in modularising the set of modules for all algorithms is
less than 5 seconds; all five algorithms perform quickly. This includes the time taken
for saving the generated module. All five algorithms result in a reduction of the
size of the original ontology, ranging from modules that have a relative size of 0.25
(WeiAbs) to modules that have a size of 0.86 (VocAbs). For the relative intra module
distance, the modules of HLAbs and WeiAbs have values greater than 1 (20.31 and
3.66 respectively).

According to Table 4.18, all the generated modules are notably different from
the source ontologies according to their metrics. In order to determine whether the
modules are of good quality, we compare the results obtained from the generated
modules to the benchmark dependencies between modularity metrics of the framework
for ontology modularity presented in Section 3.7. When comparing WeiAbs and
FeatExp modules to the dependencies from the framework, all the metric values
for the generated modules correspond with what is expected; these modules are of
‘good’ quality. We note the following from the comparison of the modules for AxAbs,
VocAbs, and HLAbDs to the dependencies. For the AxAbs modules, the metrics match
the expected metrics for 73 out of the 114 modules; the remaining 41 modules fail to
meet 1 out of the 2 expected values. For the VocAbs modules, the metrics match the
expected metrics for only 4 out of the 114 modules; the remaining 110 modules fail
to meet all out of the 3 expected values. For the HLAbs modules, the metrics match
the expected metrics for 16 out of the 114 modules; the remaining 98 modules fail to
meet 1 out of the 2 expected values.

135

9¢T

Table 4.18: The average values for the metadata for all the generated modules; app. = appropriateness, AR = attribute richness,
IR = inheritance richness.

Size A.tomlc App. Ir.ltra module Cohesion | AR | IR Relatlve Relative 1.ntra Time
size distance size module distance

AxAbs 9233.04 | 2.28 0.22 | 577658.80 0.06 0.54 | 5.13 | 0.67 0.66 3.01
modules
VocAbs | 11004 | 301 0.23 | 566255.90 0.06 0.50 | 5.08 | 0.86 0.76 2.34
modules
HLADs 174.14 | 3.36 0.24 | 96148.77 0.03 0.40 | 5.17 | 0.68 20.31 92.41
modules
WeiAbs |40 vo | 3,40 0.30 | 123491.50 0.08 041 | 2.73 1 0.25 3.66 4.10
modules
FeatExp | oo0 01| 930 0.20 | 462826.50 0.06 0.20 | 5.13 | 0.68 0.66 2.67
modules
Original |) 2o | 3 56 0.24 | 577658.80 0.03 091 | 5.11 | - : _
ontologies

One of the reasons why the VocAbs and HLAbs modules do not meet all the
expected metrics is because one of the metrics is not applicable for this set of modules;
the appropriateness value which is supposed to be large (0.75-1) cannot always be
met because some of the original ontologies have a size that is less than 167 which
means that the module will always be less than 167 and therefore the metric cannot be
achieved. From our data, 71 out of the 114 original ontology files had this inapplicable
metric for appropriateness. This was the only condition, for this set of test files where
a metric was not applicable and this was due to the size of the original ontologies
in question. Further investigation using other ontologies may reveal other conditions
where a metric may not be applicable.

Therefore, collectively, the algorithms result in some good quality modules ac-
cording to the dependencies. Upon closer analysis of the modules that don’t match
the dependencies for good quality, it was found that some of the expected values
may depend on the structure of the source ontology. For instance, VocAbs modules
are expected to have a large appropriateness value (> 0.75). However, this is only
possible where a module has between 167-333 axioms, and in some cases, a source
ontology may have fewer axioms than this range, therefore, the metric is inapplicable
for certain modules.

4.5 Discussion

The problem that it is unclear how to determine whether a module is a good or bad
module due to the lack of evaluation metrics is addressed in this Chapter using the
Tool for Ontology Module Metrics (TOMM). The experimental evaluation performed
with TOMM in Section 4.2.7, revealed a dependency diagram that shows which met-
rics values are expected for which module types. A user can then automatically
generate metrics for their module, using the TOMM tool, and refer to the depen-
dency diagram to check whether their module is of good quality or not. The TOMM
metrics tool can also be used to automatically calculate some of the metadata that
is required in the case-study ROMULUS ontologies. These ontologies are annotated
with metadata such as ModuleCoverage, which corresponds to the relative size met-
rics, ModuleCompleteness, which corresponds to the logical completeness metric, etc.
It is possible to automatically generate these metrics using the TOMM tool. Thus,
an ontology developer need not perform ontology metric calculations manually for
annotating a module with relevant metadata. We also note that other metadata val-
ues, such as the ModuleType found in the ROMULUS ontologies in the exploratory
study in Section 4.1.1 could be easily extracted from our framework in Section 3.7.
Thanks to SUGOI-Gen and the experimental evaluation using a set of modules,
we now know that interchangeability with modules is indeed possible. The success of
the interchangeability depends on the number of mappings that are available between
the source and target modules. For the set of modules used in our experiment, the
success of interchangeability ranged from 22% to a 100%. The foundational ontology
and top-domain ontology modules had a lower raw interchangeability because only
some of the entities could be mapped. For the leaner modules, all their entities were

137

mappable resulting in the 100% raw interchangeability.

An ontology developer can also gain insight on how a certain foundational, top-
domain, or leaner modules could impact the metrics of a module, and which module
might be better to use, depending on the developer’s desired metrics. For instance,
a developer may prefer to have a module with a larger intra-module distance such
as the case with the sceneOntology—-dolce—el module to promote tool processing
at the expense of human comprehension, or vice versa. SUGOI-Gen could also be
used to swap modules within a system for other ones to improve processing times for
reasoning tools. For the set of modules in our experiment, all the modules that were
interchanged except one had an improved time for reasoning.

The problem that there are insufficient tools for modularity was demonstrated
in the classification of modules in the previous Chapter (Section 3.6.2.3), where we
learned that for 9 out of the 14 module types, manual methods were used. Following
this, to further explore this problem, we looked at two case-studies on modularisation:
the ROMULUS foundational ontologies and the DMOP ontology in Section 4.1. Once
again, it was discovered that existing tools were not sufficient for the type of modules
that we needed to generate and that manual intervention was necessary. This problem
has been solved in this Chapter as follows. Five new algorithms have been designed
and implemented into a novel tool for modularisation, NOMSA. The algorithms and
new tool, NOMSA, designed for generating abstraction and expressiveness type mod-
ules solve the problems of: 1) users’ reliance on manual methods for modularity, 2)
the lack of abstraction and expressiveness techniques in existing automated tools.
Our experiments show that our algorithms can be used to automatically modularise
ontologies, thus, it both broadens the scope of the extant set of algorithms for auto-
mated modularisation [30, 58, 73, 110, 113, 149] to enable generation of more types
of modules, and it refines and realises theory-based approaches, such as presented in
[51, 76, 77, 101, 120], so that it is usable by ontology engineers.

The performance of the algorithms is good; the time taken to modularise the
ontologies is fast for all five algorithms (under 5 seconds on average). Assessing
the quality of the metrics of the modules reveal that for this test set of ontologies,
WeiAbs and FeatExp algorithms generate modules of ‘good” quality for all its resulting
modules according to the expected dependencies. For the remaining three algorithms,
they generate some ‘good’ quality modules but it is not possible to meet the expected
metric values for all the resulting modules, for some of the metrics depend on the
source ontology. The resulting modules are, however, still an improvement compared
to the original ontologies; the sizes of the modules have been reduced considerably,
and other metrics such as attribute richness, inheritance richness, etc., are notably
different when compared to the original ontologies as displayed in Table 4.18.

4.6 Conclusion
The exploratory studies conducted in this study using existing resources for modu-
larisation revealed what is lacking in current modularisation tools. The existing tools

do not satisfy some of the modularisation techniques that were required for the ex-

138

ploratory study, module management in the form of annotating modules with useful
data is lacking, and acquiring some of the metadata for modules in existing repos-
itories, e.g., logical completeness is a manual process which is time-consuming. To
assist with automatically generating some of this metadata, we compiled a list of new
and existing evaluation metrics. They have been implemented in the TOMM tool to
enable scaling up of module evaluation. Our evaluation carried out with 189 modules
revealed which metrics work well with which types of modules. It is now possible
for an ontology developer to evaluate the quality of a module/set of modules by first
classifying its type using the framework for ontology modularity, and then generat-
ing its metrics using the TOMM metrics tool. Ontology developers are then able to
determine whether their ontology module is of good quality based on comparing the
modules metrics to what is expected in the dependency diagram.

To facilitate module management of the swappability of modules, we investigated
ontology interchangeability on modules and the impact on their metrics. We presented
the design and implementation of the SUGOI-Gen software tool which can be used to
interchange a module for another module within a system, covering the four principal
scenarios of module interchange: leaner versions of an ontology, foundational and
top-domain ontologies, and the outline of ontology pattern swapping, provided that
the user uploads the source and mapping files. An experimental evaluation of three
different use-cases using six ontologies reveals that some interchangeability is possible
and that the success of interchangeability depends on the mappings that are available.
The investigation revealed that an ontology developer can gain insight on how a
certain foundational, top-domain, or subset modules could have an effect on the
metrics, and the processing times for reasoning for modules.

To solve the problem that some techniques for modularisation are lacking, five new
algorithms were designed to generate abstraction and expressiveness modules. They
have been implemented in the NOMSA tool to modularise ontologies accordingly.
The tool is fully-automated for all five algorithms. Our evaluation was carried out
on 114 diverse modules. It was revealed that NOMSA does modularise the ontologies
and that the tool performance is good (under 5 seconds on average). By inspecting
the metrics of NOMSA’s generated modules, we note that all five algorithms result in
a reduction of size of the original ontology. For some of NOMSA’s modules, the intra-
module distance is smaller than the original ontology meaning that the entities appear
to be closer linked than previously while for others, the intra-module distance is larger.
We also checked the quality of the modules using the metrics generated with TOMM
metrics tool against the benchmark dependencies between modularity metrics from an
existing framework. It was found that the average values for the generated modules
of two of the algorithms from our experiment correspond with what is expected hence
these are modules of ‘good’ quality. All the generated modules, however, are notably
different from the source ontologies according to their metrics.

139

Chapter 5

Conclusion and future research

This chapter presents the conclusions about the research and suggestions for future
avenues of research. In Section 5.1 we discuss our conclusions and answer our research
questions. We complete the chapter in Section 5.2 where we discuss future work.

5.1 Conclusion

In this thesis, we have studied ontology modularisation to solve the problems that:
1) existing techniques are not sufficient for modularisation, 2) a user has no guidance
on how to initiate modularisation for an ontology, which type of module to extract,
which technique or tool to use, and 3) how to determine if the module is of good
quality.

The first problem was solved by performing a classification on a set of ontology
modules to determine which techniques are lacking in tools, performing an exploratory
study on modularisation with existing resources to determine the issues, and by de-
signing and implementing novel algorithms to perform modularisation. The second
problem was solved by identifying dimensions of modularity, classifying a set of mod-
ules with dimensions, and linking various dimensions together to create dependencies.
This resulted in a framework for modularity which a user can use to guide the mod-
ularisation process. The last problem was solved by identifying new and existing
evaluation metrics and providing equations for those that did not have any, the de-
velopment of a tool to compute the metrics for an ontology module, and performing
an investigation to determine which metrics can be used to measure which module
types.

To solve the problems for modularity, we formulated and answered research ques-
tions pertaining to modularity. In the following section, we re-visit these questions
and provide answers and our contributions for them.

5.1.1 Research questions

Our main research question proposed in Section 1.4 was as follows: 1. How can one
devise a formal foundation for modularity to improve existing modularity

140

techniques and results? This was broken down into six sub-questions which we
discuss here.

1(a) What are the different types of modules that exist?

We propose that modules are of different types. We have identified and grouped
together 14 types of ontology modules (T1-T14). These modules are sub-divided into
functional (T1-T5), structural (T6-T8), abstraction (T9-T12), and expressiveness
(T13-T14) modules. The types are as follows: T1: Ontology design patterns, T2:
Subject domain modules, T3: Isolation branch modules, T4: Locality modules, T5:
Privacy modules, T6: Domain coverage modules, T7: Ontology matching modules,
T8: Optimal reasoning modules, T9: Axiom abstraction modules, T10: Entity-type
modules, T11: High-level abstraction, T12: Weighted modules, T13: Expressiveness
sub-language modules, and T14: Expressiveness feature modules. For a full definition
of each type of module, with corresponding examples, refer to Section 3.3.

1(b) What are the properties with which we can characterise each mod-
ule type?

There are 16 properties with which we can characterise ontology modules (P1-
P14). These properties exist in isolation in a single module (P1-P8) and in a set of
modules (P9-P14). The properties are as follows: P1: Seed signature, P2: Information
removal, P3: Abstraction, P3.1: Breadth abstraction, P3.2 Depth abstraction, P4:
Refinement, P5: Stand-alone, P6: Source ontology, P7: Proper subset, P8: Imports,
P9: Overlapping, P10: Mutual exclusion, P11: Union Equivalence, P12: Partitioning,
P13: Inter-module interaction, and P14: Pre-assigned number of modules. For a full
definition of each property, with corresponding examples, refer to Section 3.4.1.

1(c) What are the different purposes behind module creation? There
are seven different use-cases for which modules exist (U1-U7). The use-cases are
as follows: Ul: Maintenance, U2: Automated reasoning, U3: Validation, U4: Pro-
cessing, U5: Comprehension, U6: Collaborative efforts, and U7: Reuse. For a full
definition of each use-case, with corresponding examples, refer to Section 3.2.

1(d)Which techniques have been proposed to perform different types
of modularisation?

There are nine techniques that have been proposed to perform modularisation
(MT1-MT9). This includes graph theory approaches (MT1-MT2), statistical ap-
proaches (MT3), and semantic approaches (MT4-MT9). The techniques are as fol-
lows: MT1: Graph partitioning, MT2: Modularity maximisation, MT3: Hierar-
chical clustering, MT4: Locality modularity, MT5: Query-based modularity, MT6:
Semantic-based abstraction, MT7: A priori modularity, MT8: Manual modularity,
and MT9: Language simplification. For a full definition of each technique, with
corresponding examples, refer to Section 3.5.

1(e) How can existing techniques for modularity be improved?

Existing techniques are improved as follows. We performed a literature review
of existing techniques for modularity in Section 2.6 where we concluded that the
abstraction techniques have no tool support at present, and some of the abstraction
techniques are tailored towards conceptual data modules and not ontologies, and
there is limited tool support for language simplification techniques. Following this, we
performed a classification of ontology modules, and from this, in Section 3.6.2.3 it was

141

found that tool-based support is lacking for generating various module types. To solve
these problems and improve existing techniques we formalised various definitions for
abstraction and expressiveness with regard to modularity, designed new algorithms,
and implemented the algorithms in the Novel Ontology Modularisation SoftwAre
(NOMSA). The five new algorithms we designed are used to generate abstraction
and expressiveness type modules: 1) T9: axiom abstraction, 2) T10: entity type
abstraction, 3) T11: high-level abstraction, 4) T12: weighted abstraction, and 5)
T14: feature expressiveness algorithms. All five of these algorithms are presented in
Section 4.4.1.

1(f) What is the criteria for ‘good’ or ‘usable’ ontology modules to
meet?

The criteria for good modules are dependent on the type of module that it is.
This is presented in Section 4.2.7.3. We compiled a list of evaluation metrics by
studying existing literature on modularity and creating new metrics. This resulted in
13 metrics from the literature, of which seven were short of a metric for quantitative
evaluation that have now been devised (indicated with an asterisk below), and three
new ones have been added (indicated with a double asterisk below). The evalua-
tion metrics are grouped into: structural (EM1-EMT), logical (EM8-EM9), relational
(EM10-EM12), information hiding (EM13-EM14), and richness (EM15-EM16) crite-
ria. The evaluation metrics are as follows: EM1: Size, EM2: Relative size**, EM3:
Appropriateness, EM4: Atomic Size**, EM5: Intra-module distance®, EM6: Relative
Intra-module distance™*, EM7: Cohesion, EMS8: Correctness®, EM9: Completeness™,
EM10: Inter-module distance®, EM11: Coupling®, EM12: Redundancy, EM13: En-
capsulation®™, EM14: Independence®, EM15: Attribute richness, EM16: Inheritance
richness. For a full definition of each evaluation metric, with corresponding examples,
refer to Section 4.2. The list of evaluation metrics was implemented in a software tool,
TOMM. We performed an experiment to evaluate modules with a set of metrics using
TOMM to determine which metrics can be used to evaluate which module types and
how to tell if a module is of good quality. The experiment revealed what makes a
good quality module, which differs for the various module types. This is shown in
the dependency diagram in Figure 5.1.

1(g) Is there a way to link the above answers in order to guide the
modularity process?

The answers to questions 1(a)-1(e) are linked as follows, based on a classification
of ontology modules. Each dimension from the questions (use-case, technique, type,
property, and evaluation metric) is linked systematically to create dependencies be-
tween them. When a user wishes to create a module, having the use-case on hand, the
user is directed towards which type of module is to be created thanks to the depen-
dencies between the use-case and type. From this, the user can now check which is the
appropriate technique to use to generate such a module, thanks to the dependencies
between type and technique. Next, the technique tells the user which properties the
module ought to exhibit, thanks to the dependencies between technique and property.
These properties can be used to annotate the module with metadata which promotes
the long-term goal of ontology discovery and reuse. A high-level view of this process
is shown in the framework for modularity in Figure 5.2.

142

T1: Ontology design
pattern modules

Relative size: small
Cohesion: small
Completeness: true
Size: 1-10
No. of axioms: 50 - 410
Appropriateness: medium
Atomic size: 3.5 - 6.9
Intramodule distance: 0 - 97
Relative intramodule distance: 11 - 30.38
Correctness: false
Attribute richness: 0 - 3
Inheritance richness: 1 - 4

T2: Subject domain modules

Cohesion: small
Encapsulation: large
Coupling: small
Redundancy: small
Size: 10 - 1103
No. of axioms: 46 - 3954
Appropriateness: moderate
Atomic size: 3.42 - 7.66
Intramodule distance: 0 - 340383
Attribute richness: 0 - 3.44
Inheritance richness: 1 - 6.44

T3: Isolation branch modules

Cohesion: small
Size: 18 - 141

Relative size: large
No. of axioms: 127 - 491
Appropriateness: small
Atomic size: 5.23 - 7.49

Intramodule distance: 496 - 13942
Relative intramodule distance: 0.94 - 1
Completeness: false
Attribute richness: 0 - 1.87
Inheritance richness: 1.77 - 2.75

T4: Locality modules

Relative size: medium
Cohesion: small
Correctness: true
Size: 1 - 51
No. of axioms: 127 - 491
Appropriateness: medium
Atomic size: 1 - 24.32
Intramodule distance: 0 - 1556
Relative intramodule distance: 1 - 126.31
Attribute richness: 0.07 - 9.3
Inheritance richness: 0.47 - 3.5

T5: Privacy modules

Relative size: medium
Cohesion: small
Size: 22 - 45
No. of axioms: 79 -259
Appropriateness: moderate
Atomic size: 5.05 - 9.36
Intramodule distance: 102 - 1326
Relative intramodule distance: 1.01- 1.08
Correctness: false
Completeness: false
Attribute richness: 0.69 - 1.05
Inheritance richness: 1.71 - 3.18

Figure 5.1: The set of metrics that can be measured for each module type. Metrics

T6: Domain coverage modules

Relative size: small
Cohesion: small
Encapsulation: large
Coupling:small
Redundancy:small
Size: 10 -1638
No. of axioms: 18 - 3994
Appropriateness: medium
Atomic size: 2.63 - 4.29
Intramodule distance: 0 - 3323816
Relative intramodule distance: 0 - 0.03
Attribute richness: 0 - 0.67
Inheritance richness: 2.25 - 4.52

T7: Ontology matching
modules

Relative size: small
Cohesion: small
Encapsulation: large
Independence: true
Coupling: small
Redundancy:small
Size:1-10
No. of axioms: 6 - 36
Appropriateness: small
Atomic size: 1 - 2.1
Intramodule distance: 0 - 9
Relative intramodule distance: 0 - 6
Attribute richness: 0 - 2
Inheritance richness: 1 - 2

T8: Optimal reasoning
modules

Cohesion: small
Correctness: true
Encapsulation: large
Coupling: small
Redundancy:medium
Size:662 - 1155
Relative size: moderate
No. of axioms: 1376 - 3409
Atomic size: 2.85 - 4.96
Intramodule distance: 0.009 - 0.02
Relative intramodule distance: 1 - 1.05
Completeness: false
Attribute richness: 0.16 - 1.54
Inheritance richness: 1.86 - 5.66
Independence: false

T9: Axiom abstraction
modules

Cohesion: small
Correctness: true
Size:94
Relative size: large
No. of axioms: 884
Atomic size: 2.89
Intramodule distance:0.07
Completeness: false
Attribute richness: 0
Inheritance richness: 2.38

T10: Entity type abstraction
modules

Appropriateness: large
Cohesion: small
Correctness: true
Size:102
Relative size: moderate
No. of axioms: 257
Atomic size: 4.21
Intramodule distance: 23596
Relative intramodule distance: 1.04
Completeness: false
Attribute richness: 0
Inheritance richness: 3.06

T11: High-level
abstraction modules

Appropriateness: large
Cohesion: small
Size:3 - 45

Relative size: moderate

No. of axioms: 184 - 1751

Atomic size: 3.61 - 3.78

Intramodule distance: 133 - 4854
Relative intramodule distance: 0.61 - 1.02
Completeness: false

Attribute richness: 0.33 - 0.73
Inheritance richness: 2 - 2.75

T12: Weighted abstraction
modules

Relative size: medium
Cohesion: small
Size: 45 - 147

No. of axioms: 479 - 687

Appropriateness: small

Atomic size: 3.81 - 7.82

Intramodule distance: 3539 - 62 743
Relative intramodule distance: 0.88 - 2.73
Attribute richness: 0 - 2.31
Inheritance richness: 2.56 - 3.5

T13: Expressiveness sub-
language modules

Cohesion: small
Size: 81 -1401

Relative size: large
No. of axioms: 323 - 4214
Appropriateness: medium

Atomic size: 3.85 - 4.94
Intramodule distance: 457 - 1398343
Relative intramodule distance: 1 - 1.002

Completeness: false

Attribute richness: 0 - 1.27
Inheritance richness: 1.93 - 3.75

T14: Expressiveness feature
modules

Cohesion: small
Size: 758
Relative size: large
No. of axioms: 4369
Atomic size: 5.57
Intramodule distance: 1396298
Relative intramodule distance: 1.001
Correctness: false
Completeness: false
Attribute richness: 1.78
Inheritance richness: 3.04

and values in bold font are those which evaluate well for a module type.

143

o

Type Technique Property

Figure 5.2: A high-level view of the framework for modularity.

Now we can re-visit our main research question.

1. How can one devise a formal foundation for modularity to improve
existing modularity techniques and results? The work done in the thesis,
on solving the problems concerning modularity has led to a formal foundation for
modularity. We created the foundation as follows:

Identify dimensions for modularity: Questions 1 (a)-(d),(f) deal with identify-
ing dimensions for modularity and populating each dimension with a list of
sub-dimensions.

Create dependencies between dimensions: An experimental evaluation where
a set of modules was classified revealed dependencies between the dimensions.
The dependencies make up a formal framework for modularity, and they can
be used systematically to guide the modularisation process (question 1(g)), and
to annotate modules with information about its properties. The framework
was evaluated using both ontology and conceptual data model use-cases in Sec-
tion 3.8.1.

Determine how to evaluate a module: The dependencies between a module’s type
and evaluation metrics provide insight on whether a module is good quality
(question 1(f)). The dependencies were created thanks to the Tool for On-
tology Metrics (TOMM) software we created to generate metrics for ontology
modules. TOMM was evaluated using ontology module use-cases to check if the
modules were of good quality.

Improve modularisation techniques: Question 1(e) deals with improving mod-
ularisation techniques. From the review of existing literature and the experi-
mental evaluation where a set of modules were classified, we gained insight on
algorithms that were lacking for modularisation and techniques that were lack-
ing in existing modularisation tools. This drove us to design new algorithms
to generate modules and to automate them in the NOvel Modularisation Soft-
wAre (NOMSA) tool. NOMSA was evaluated by comparing it to other tools,
and with an experimental evaluation involving a set of ontologies which were to
be modularised and analysed.

The formal foundation for modularisation comprises: an exhaustive set of mod-
ularity dimensions that are linked to provide dependencies between them. These
dependencies make up the formal framework for modularity. The framework may
be used to systematically guide the modularisation process, in cases where users are

144

unsure about which techniques should be used to generate a module, and how to
evaluate a module thanks to the TOMM metrics tool and dependencies. The formal
framework also provides ontology developers with properties that a module ought to
exhibit to annotate it for promoting ontology reuse. An investigation into module
evaluation revealed how to measure the quality of an ontology module using the new
and existing metrics that were implemented in the novel tool, TOMM. An investiga-
tion, into module interchangeability with the novel tool, SUGOI-Gen revealed that
swapping modules in a modular ontology is possible, and has an impact on the mod-
ule’s metrics, and reasoning processing time. We formalised definitions for various
abstraction and expressiveness terms and created five new algorithms to fill in the
gaps of insufficient modularity tools and techniques. These algorithms were imple-
mented in a software tool, NOMSA, to automate the process. All the algorithms were
able to modularise the set of ontologies successfully, and assessing the quality of the
modules reveal that two of the algorithms generate modules that are of good quality
and for the remaining three algorithms they generate some ‘good’ quality modules,
but it is not possible to meet the expected metric values for all the resulting modules,
for some of the metrics depend on the source ontology.

5.2 Future research

Our significant achievement of providing a foundation for modularity encompasses
various contributions: a framework for modularity, new algorithms for modularisa-
tion, a method and tool for evaluating the quality of a module, and a tool for module
management in the form of automatic module swapping, and the foundation success-
fully solves several problems concerning modularity. A number of topics merit further
investigation to expand this work.

Automating manual methods: The classification of existing ontology modules re-
vealed that 9 out of 14 module types were created using manual methods. While
we created algorithms and a tool to automate the manual methods for 5 more
module types, there are still 4 module types that need to be manually created.

For creating ontology design patterns, isolation branch, privacy, and sub-language
expressiveness modules, manual methods need to be used. Since ontology de-
sign patterns deal with creating a module by isolating a part of the ontology
that can be reused as a best practice for recurring ontology issues, it is unlikely
that this can be automated. The remaining three module types, however, could
be achieved with by designing new rules and algorithms and implementing them
in software.

Linking modules: Modules are not always stand-alone ontologies. In some cases,
users wish to link concepts in a module to those of a related module. To
date, there are several linking languages such as e-connections [94], Distributed
Description Logics (DDL) [19], Package-based Description Logics (P-DL) [8], C-
OWL [21], and the Distributed Ontology Language (DOL) [108]. Each of these

145

languages have drawbacks and are insufficient for providing complete module
links [7, 9]. In DDL, relations are restricted to one-to-one domain relations. In e-
connections, general subsumption is affected whereby a class cannot be declared
to be a subclass of a class of a related module; properties are affected in the
same way. P-DL uses the OWL import statement which has a major drawback
of importing all the classes, axioms and properties of the imported ontology and
does not allow partial reuse as needed for ontology modularity linking. C-OWL
does not support linking modules with relational properties, and that there are
some reasoning difficulties. For the DOL linking language, there has been no
formal investigation on using DOL to exhaustively link ontology modules, with
different types of axioms and relations yet. It is worthwhile to investigate using
DOL as a module linking language for a set of inter-related modules.

Module management: Ontology modules are constantly evolving. Managing these
modules is a cumbersome task due to the lack of modular ontology evolution
systems and tools. While we did provide some core solution for this with the
properties that are used to annotate modules to promote ontology reuse, it is
difficult to manage and maintain changes among interrelated modules. Module
management requires further investigation to assist with the changes and the
interactions among related modules.

Module classification: For this work to have an impact on the current field of
ontology modularisation, more classification and testing needs to be performed
using real-world modules. To do this, we will look at active ontology repositories
such as OntoHub[107] and perform classification and tests for verification and
to uncover more information.

Module annotation The properties dimension of the framework reveals informa-
tion about an ontology module. This could be added as a parameter to existing
ontology repositories to annotate modules and enable ontology discovery and
reuse.

Ontology methodology integration To promote widespread use of the work, the
framework for modularisation could be integrated into the NeOn ontology method-
ology [150], particularly at the onset of the methodology at the specification step
(1). This step could be expanded to mention that use-cases need to be identified
and to then traverse through the steps of the modularisation framework.

146

Lyl

Appendix A

Classification of the set of modules

For the experimental evaluation in Section 3.6 where we classified a set of 189 ontology modules according to the dimensions for
modularity, we present the full classification for the modules according to use-case, type, property, and technique in Table A.1.

Table A.1: The classification of the set of modules for
the use-case, type, property, and technique dimensions;
graph p = graph partitioning. Modules without sources
are ones that were generated for the classification due to
the lack of certain module types.

Module (?rftlﬁi(r)lg; Use-case Type | Properties Technique Source
1. Set Collections u7 M1 P2, P6, P7, P8 MTS8: Manual | [18]
2. Typesofentities DUL u7 M1 P2, P6, P7, P8 MTS8: Manual 127]
3. ActingFor DUL u7 M1 P2, P6, P7, P8 MTS8: Manual | [45]
4. Situation DUL u7 M1 P2, P6, P7, P8 MTS8: Manual | [46]
5. BathroomLocation - uT7 M1 P8 MTS8: Manual 1]
6. Calendar - u7 M1 P8 MTS8: Manual

V1

7. CalendarFreeTime - u7 M1 P8 MTS8: Manual

8. Content - ur M1 P8 MTS8: Manual

9. ContentCollection - ur7 M1 P8 MTS8: Manual

10. | ContentList - ur7 M1 P8 MTS: Manual

11. | ContentRealizations | - u7 M1 P8 MTS8: Manual

12. | Context - u7 M1 P8 MTS8: Manual

13. | ContextSequence - u7 M1 P8 MTS8: Manual

Set of OntoSpace modules P9, P14

14. | Amirequirements - U1, U3, U6, U7 | M2 P8 MTT: A priori

15. | BuildingArchitecture | - U1, U3, U6, U7 | M2 P8 MTT: A priori

16. | BuildingConstruction | - U1, U3, U6, U7 | M2 P5 MT7: A priori

17. | DOLCE-Lite - U1, U3, U6, U7 | M2 P5 MTT: A priori 1]
18. | DomOnto - U1, U3, U6, U7 | M2 P8 MT7: A priori

19. | RCC-Ontology - U1, U3, U6, U7 | M2 P5 MTT: A priori

20. | SpatialOntology - U1, U3, U6, U7 | M2 P8 MTT: A priori

Set of Onto-DM modules P9, P14

21. | OntoDM-core - U1,U3, U6, U7 | M2 P8 MT7: A priori 121]
22. | OntoDM-KDD - U1,U3, U6, U7 | M2 P5 MTT: A priori

23. | OntoDT - U1,U3, U6, U7 | M2 P8 MTT: A priori

Set of myExperiment modules P9, P14

24. | SNARM - U1,U3, U6, U7 | M2 P5 MTT: A priori

25. | Base - U1,U3, U6, U7 | M2 P5 MTT: A priori

26. | Attribution&Credit - U1,U3, U6, U7 | M2 P5 MTT: A priori

27. | Annotations - U1,U3, U6, U7 | M2 P5 MTT: A prior:

28. | Packs - U1,U3, U6, U7 | M2 P5 MT7: A priori 111]
29. | Experiments - U1,U3, U6, U7 | M2 P5 MTT: A priori

30. | Viewings&Downloads | - U1,U3, U6, U7 | M2 P5 MTT: A priori

31. | Contributions - U1,U3, U6, U7 | M2 P5 MTT: A priori

32. | Components - U1,U3, U6, U7 | M2 P5 MTT: A prior

671

33. | Specific - | UL,U3, U6, U7 | M2 | P5 MTT7: A priori
Set of GIST modules P9, P14
34. | gistAddress - U1, U3, U6, U7 | M2 P8 MT7: A priori
35. | gistAgreement - U1, U3, U6, U7 | M2 P8 MTT: A priori
36. | gistCategory - U1, U3, U6, U7 | M2 P8 MTT: A priori
37. | gistContent - U1, U3, U6, U7 | M2 P8 MTT: A priori
38. | gistCore - U1, U3, U6, U7 | M2 P8 MT7: A priori
39. | gistEvent - U1, U3, U6, U7 | M2 P8 MT7: A priori
40. | gistID - U1, U3, U6, U7 | M2 P8 MTT: A priori
41. | gistIntention - U1, U3, U6, U7 | M2 P8 MTT: A priori
42. | gistMagnitude - U1, U3, U6, U7 | M2 P8 MTT: A priori 1103]
43. | gistMeasure - U1, U3, U6, U7 | M2 P8 MT7: A priori
44. | gistOrganization - U1, U3, U6, U7 | M2 P8 MT7: A priori
45. | gistPerson - U1, U3, U6, U7 | M2 P8 MTT: A priori
46. | gistPhysicalThing - U1, U3, U6, U7 | M2 P8 MTT: A priori
47. | gistPlace - U1, U3, U6, U7 | M2 P8 MTT: A priori
48. | gistTemporalRelation | - U1, U3, U6, U7 | M2 P8 MTT: A prior
49. | gistTime - U1, U3, U6, U7 | M2 P8 MTT: A priori
50. | gistTop - U1, U3, U6, U7 | M2 P5 MTT: A priori
51. | gistUnit - U1, U3, U6, U7 | M2 P8 MTT: A priori
Set of NCS modules P9, P14
52. | ncsLN - U1, U3, U6, U7 | M2 P5 MT7: A priori
53. | nesNY - U1, U3, U6, U7 | M2 P5 MTT: A priori 25]
54. | ncsSW - U1, U3, U6, U7 | M2 P5 MTT: A priori
55. | ncsXH - U1, U3, U6, U7 | M2 P5 MTT: A priori
56. | GFO No Occurrents | GFO u7 M3 P2, P5, P6, P7 MTS8: Manual
57, | GFO No Pemsistants | U7 M3 | P2, P5, P6, P7 MTS: Manual
and Presentials
58. | BFO Continuants BFO U7 M3 P2, P5, P6, P7 MTS8: Manual | [88]

0ST

59. | BFO Occurrents BFO u7 M3 P2, P5, P6, P7 MTS8: Manual
60. | DOLCE-Endurants DOLCE-Lite | U7 M3 P2, P5, P6, P7 MTS8: Manual
61. | DOLCE-Perdurants DOLCE-Lite | U7 M3 P2, P5, P6, P7 MTS8: Manual
62. DOL.CE_NO_ . DOLCE-Lite | U7 M3 P2, P5, P6, P7 MTS8: Manual
Quality-Qualia
63. | LarscAliphatic Amino acid- | 5 M4 | PL, P2 P5 P6, P7 | MT4: Locality
AminoAcid inferred
64. | chemical entity SIO ur M4 P1, P2, P5, P6, P7 | MT4: Locality
65. | Seizure_Types Epilepsy U7 M4 | P1, P2, P5, P6, PT | MT4: Locality
Ontology
66. | MeatTopping pizza U6, U7 M5 P2, P5, P6, P7 MTS8: Manual
67. | VegetableTopping pizza ue, U7 M5 P2, P5, P6, P7 MTS8: Manual
Set of Amino acid modules P9, P12, P13
6g. | ‘minoacid- amino acid - 17) 173 1y M6 | P2, P4, P6 MT1: Graph p
partitionl inferred
69, | AAminoacid- amino acid- | 17y 73 ¢ M6 | P2, P4, P6 MT1: Graph p
partition2 inferred
Set of EDAM modules P9, P12, P13
70. | edam_partitionl EDAM_1.9 Ul, U3, U6 M6 P2, P4, P6 MT1: Graph p
71. | edam_partition2 EDAM_1.9 U1, U3, U6 M6 P2, P4, P5, P6 MT1: Graph p
72. | edam_partition3 EDAM_1.9 U1, U3, U6 M6 P2, P4, P6 MT1: Graph p
73. | edam_partition4 EDAM_1.9 U1, U3, U6 M6 P2, P4, P6 MT1: Graph p
74. | edam_partitiond EDAM_1.9 U1, U3, U6 M6 P2, P4, P6 MT1: Graph p
Set of MEO modules P12, P14
75. | meo_partitionl meo_v07 Ul, U3, U6 M6 P2, P5, P6, P7 MT1: Graph p
H 76. | meo_partition2 meo_v07 Ul, U3, U6 M6 P2, P5, P6, P7 MT1: Graph p
77. | meo_partition3 meo_v07 Ul, U3, U6 M6 P2, P5, P6, P7 MT1: Graph p
78. | meo_partitiond meo_v07 U1, U3, U6 M6 P2, P5, P6, P7 MT1: Graph p
79. | meo_partitiond meo_v07 U1, U3, U6 M6 P2, P5, P6, P7 MT1: Graph p

161

Set of CARO modules P10, P12

80. | single_134 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
81 single_138 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
82. | single_141 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
83. | single_146 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
84. | single_151 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
85. | single_158 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
86. | single_161 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
87 | single_169 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
88. | single_170 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
89. | Source_Block_145 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
90. | Source_Block_147 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
91. | Source_Block 149 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
92. | Source_Block 153 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
93. | Source_Block_154 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
94. | Source_Block_156 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
95. | Source_Block_157 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
96. | Source_Block_159 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
97. | Source_Block_160 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
98. | Source_Block_162 CARO U4, U6 \Y g P2, P5, P6, P7 MT1: Graph p
99. | Source_Block_165 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
100. | Source_Block_166 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
101. | Source_Block_168 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
102. | Source_Block 172 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
103. | Source_Block 173 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
104. | Source_Block_176 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
105. | Source Block 177 CARO U4, U6 \Y g P2, P5, P6, P7 MT1: Graph p
106. | Source_Block_179 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

¢Sl

107. | Source_Block_180 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
108. | Source_Block_181 CARO U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
Set of Spatial modules P12, P14

109. | Target_Block 4 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
110. | Target_Block 9 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
111. | Target_Block_13 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
112. | Target_Block 24 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
113. | Target_Block_27 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
114. | Target_Block_46 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
115. | Target_Block 48 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
116. | Target_Block_49 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
117. | Target_Block_50 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
118. | Target_Block 51 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
119. | Target_Block_52 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
120. | Target_Block_55 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
121. | Target_Block_56 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
122. | Target_Block 57 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
123. | Target_Block_58 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
124. | Target_Block_59 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
125. | Target_Block_60 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
126. | Target_Block_62 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
127. | Target_Block_64 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
128. | Target_Block_66 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
129. | Target_Block_70 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
130. | Target_Block_73 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
131. | Target_Block_75 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
132. | Target_Block_77 Spatial U4, U6 \Y g P2, P5, P6, P7 MT1: Graph p
133. | Target_Block_78 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

eql1

134. | Target_Block_79 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
135. | Target_Block_80 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
136. | Target_Block_81 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
137. | Target_Block 83 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
138. | Target_Block 84 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
139. | Target_Block 85 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
140. | Target_Block_90 Spatial U4, U6 \Y g P2, P5, P6, P7 MT1: Graph p
141. | Target_Block 92 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
142. | Target_Block 95 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
143. | Target_Block_96 Spatial U4, U6 \Y g P2, P5, P6, P7 MT1: Graph p
144. | Target_Block 97 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
145. | Target_Block 99 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
146. | Target_Block 101 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
147. | Target_Block_102 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
148. | Target_Block_104 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
149. | Target_Block_106 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
150. | Target_Block 107 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
151. | Target_Block_109 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
152. | Target_Block_110 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
153. | Target_Block 112 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
154. | Target_Block_114 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
155. | Target_Block_115 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
156. | Target_Block 116 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
157. | Target_Block 117 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
158. | Target_Block_119 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
159. | Target_Block_120 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
160. | Target_Block_122 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p
161. | Target_Block_123 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

25!

162. | Target_Block_124 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

163. | Target_Block_125 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

164. | Target_Block_126 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

165. | Target_Block 127 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

166. | Target_Block 129 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

167. | Target_Block_130 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

168. | Target_Block_131 Spatial U4, U6 \Y g P2, P5, P6, P7 MT1: Graph p

169. | Target_Block_132 Spatial U4, U6 M7 P2, P5, P6, P7 MT1: Graph p

170. | DMOP-branch- DMOP U2, U4 M8 | P1, P2, P6, P7 MT4: Locality
Endurant

171, | DMOP-branch- DMOP U2, U4 M8 | P1, P2, P6, P7 MT4: Locality | |/
Perdurant
DMOP-branch- .

172. Abstract-Quality DMOP U2, U4 M8 P1, P2, P6, P7 MT4: Locality

173, | DMOP-branch- DMOP U2, U4 M8 | P1, P2, P6, P7 MT4: Locality
Toplevel

174. | FGA_taxonomy FGA U5 M9 P3, P3.1, P5, P6, P7 | MTS8: Manual

175. | beo_classes_only bco Ub M10 | P3, P3.2, P4, P5 MTS8: Manual

176. | GFO ATO GFO [O15) M11 | P3, P3.2, P5, P6, P7 | MT8: Manual 88)]

177. | GFO ACO GFO [O15) M11 | P3, P3.2, P5, P6, P7 | MT8: Manual

178, | DMOP-branch- DMOP U5 M1l | P3, P32, P6, P7 MT8: Manual | [78]
Toplevel

179. | Biotoplite Biotop Ub M11 | P3, P3.2, P4, P5 MTS8: Manual | [13]

180. | GFO-Basic GFO [O15) M12 | P3, P7, P8 MTS8: Manual | [88]

181. | FMA _subset FMA [O15) M12 | P3, P3.2, P4, P5 MTS8: Manual | [133]

182, | FamilyHealthHistory. | FamilyHealth |, M12 | P1, P3, P3.2, P4, P5 | MT8: Manual
familyrelations History

183. | DMOP-profile-EL DMOP U2 M13 | P2, P6, P7 MTS8: Manual | [78]

Gaq1

184. | Fire-EL Fire0.9.1 U2 M13 | P2, P5, P6, P7 MTS8: Manual

185. | Fire-RL Fire0.9.1 U2 M13 | P2, P5, P6, P7 MTS8: Manual

186. | Typon-EL Typon U2 M13 | P2, P5, P6, P7 MTS8: Manual

187. | Typon-QL Typon U2 M13 | P2, P6, P7 MTS8: Manual

188. | Typo-RL Typon U2 M13 | P2, P6, P7 MTS8: Manual
DMOP-

189. WithoutInverseRoles DMOP U2 M14 | P2, P4, P6 MTS8: Manual | [78]

Appendix B

The Burger Ontology

We provide the complete Burger OWL ontology written in OWL Functional Syntax
here.

Prefix
Prefix (owl:=<http://www.
Prefix (rdf:=<http://www.w3.0rg/1999/02/22-rdf-syntax—ns#>)

(:=<http://www.thezfiles.co.za/burger#>)

(

(
Prefix (xml:=<http://www.w3.0rg/XML/1998/namespace>)

(

(

w3.0rg/2002/07/owl#>)

Prefix (xsd:=<http://www.w3.0rg/2001/XMLSchema#>)

Prefix (rdfs:=<http://www.w3.0rg/2000/01/rdf-schema#>)

Prefix (untitled-ontology-415:=<http://www.semanticweb.org/zkhan/
ontologies/2016/8/untitled-ontology—-415#>)

Ontology (<http://www.thezfiles.co.za/burger>

Declaration (ObjectProperty (:cookedBy))

Declaration(Class (:BeefPatty))
Declaration (Class (:Beefburger))
Declaration(Class (:Burger))
Declaration(Class (:BurgerBun))
Declaration(Class (:Cheapburger))
Declaration(Class (:Cheese))
Declaration(Class (:Chef))
Declaration(Class (:Customer))
Declaration(Class(:Filling))
Declaration(Class (:HamBurger))
Declaration(Class (:HealthyBurger))
Declaration(Class (:Lettuce))
Declaration(Class (:Medium))
Declaration(Class (:Patty))
Declaration(Class (:PattyCook))
Declaration(Class (:Person))
Declaration (Class (:Rare))
Declaration (Class (:Sauce))
Declaration(Class (:Tomato))
Declaration(Class (:WellDone))
Declaration(Class (:WhiteBun))
Declaration (Class (:WholeWheatBun))

(

(

Declaration (ObjectProperty (:hasBun))

156

Declaration (ObjectProperty (:hasFilling))
Declaration (ObjectProperty (:hasPatty))
Declaration (ObjectProperty (:hasPattyCook))
Declaration (NamedIndividual (:ChefRose))
Declaration (NamedIndividual (:MarthasBurger))
Declaration (NamedIndividual (:MyBurger))
FHAFSH AR E AR AR AR H S H S S

Object Properties

#HAHHEHE A

Object Property: :hasBun (:hasBun)
FunctionalObjectProperty (:hasBun)
ObjectPropertyDomain (:hasBun :Burger)
ObjectPropertyRange (:hasBun :BurgerBun)

Object Property: :hasPatty (:hasPatty)

ObjectPropertyDomain (:hasPatty :Burger)
ObjectPropertyRange (:hasPatty :Patty)

Object Property: :hasPattyCook (:hasPattyCook)

ObjectPropertyDomain (:hasPattyCook :Patty)
ObjectPropertyRange (:hasPattyCook :PattyCook)

FHAFH A HEHHFFF A

Classes

FHAF S H S

Class: :BeefPatty (:BeefPatty)
SubClassOf (:BeefPatty :Patty)

Class: :Beefburger (:Beefburger)

EquivalentClasses (:Beefburger :HamBurger)
SubClassOf (:Beefburger :Burger)

Class: :Cheapburger (:Cheapburger)

SubClassOf (:Cheapburger :Burger)
SubClassOf (:Cheapburger ObjectMaxCardinality(l :hasFilling

Class: :Cheese (:Cheese)
SubClassOf (:Cheese :Filling)
Class: :Chef (:Chef)
SubClassOf (:Chef :Person)

Class: :Customer (:Customer)

157

:Filling))

SubClassOf (:Customer :Person)

Class: :HamBurger (:HamBurger)

EquivalentClasses (:HamBurger ObjectIntersectionOf (:Burger
ObjectSomeValuesFrom(:hasPatty :BeefPatty)))

SubClassOf (:HamBurger :Burger)

Class: :HealthyBurger (:HealthyBurger)

SubClassOf (:HealthyBurger :Burger)

SubClassOf (:HealthyBurger ObjectAllValuesFrom(:hasFilling ObjectUnionOf
(:Lettuce :Tomato)))

Class: :Lettuce (:Lettuce)

SubClassOf (:Lettuce :Filling)

Class: :Medium (:Medium)

SubClassOf (:Medium :PattyCook)

Class: :PattyCook (:PattyCook)

EquivalentClasses (:PattyCook ObjectUnionOf (:Medium :Rare :WellDone))
Class: :Rare (:Rare)

SubClassOf (:Rare :PattyCook)

Class: :Sauce (:Sauce)

SubClassOf (:Sauce :Filling)

Class: :Tomato (:Tomato)

SubClassOf (:Tomato :Filling)

Class: :WellDone (:WellDone)

SubClassOf (:WellDone :PattyCook)

Class: :WhiteBun (:WhiteBun)

SubClassOf (:WhiteBun :BurgerBun)
DisjointClasses (:WhiteBun :WholeWheatBun)

Class: :WholeWheatBun (:WholeWheatBun)
SubClassOf (:WholeWheatBun :BurgerBun)

g sissaadsadisasaaaadidi

Named Individuals

158

FHEFHFHHHH A H AR AR AR

Individual: :MarthasBurger (:MarthasBurger)
Individual: :MyBurger (:MyBurger)
ClassAssertion (:Beefburger :MyBurger)

ObjectPropertyAssertion (:cookedBy :MyBurger :ChefRose)
DifferentIndividuals (:MarthasBurger :MyBurger))

159

Bibliography

1]

Set of IKS content ontology design patterns. http://www.
ontologydesignpatterns.org/iks/ami/2011/02/ last accessed:
20 June 2017, 2011. Online (January 2011).

Sarra Ben Abbes, Andreas Scheuermann, Thomas Meilender, and Mathieu
d’Aquin. Characterizing Modular Ontologies. In The 6th International Work-
shop on Modular Ontologies (WoMO ’12), volume 875 of CEUR Workshop
Proceedings. CEUR-WS.org, 2012.

Soraya Setti Ahmed, Mimoun Malki, and Sidi Mohamed Benslimane. Ontology
partitioning: Clustering based approach. International Journal of Information
Technology and Computer Science, 7(6):1-11, 2015.

F. Amato, A. De Santo, V. Moscato, F. Persia, A. Picariello, and S.R. Poccia.
Partitioning of ontologies driven by a structure-based approach. In Ninth Inter-
national Conference on Semantic Computing (ICSC’15), pages 320-323. IEEE,
2015. Anaheim, California, USA, February 7-9 2015.

Erick Antezana, Mikel Egana, Ward Blonde, Aitzol Illarramendi, Inaki Bilbao,
Bernard De Baets, Robert Stevens, Vladimir Mironov, and Martin Kuiper.
The cell cycle ontology: an application ontology for the representation and
integrated analysis of the cell cycle process. Genome Biology, 10(5):R58, 2009.

Kenneth Baclawski, Christopher J. Matheus, Mieczyslaw M. Kokar, Jerzy
Letkowski, and Paul A. Kogut. Towards a symptom ontology for seman-
tic web applications. In The Third International Semantic Web Conference,
(ISWC"’14), volume 3298 of LNCS, pages 650-667. Springer, 2004. Hiroshima,
Japan, November 7-11.

Jie Bao, Doina Caragea, and Vasant Honavar. On the Semantics of Linking and
Importing in Modular Ontologies. In 5th International Semantic Web Confer-
ence (ISWC’06), volume 4273 of Lecture Notes in Computer Science, pages
72-86. Springer, 2006. Nov 5-9, Athens. GA, USA.

Jie Bao, Doina Caragea, and Vasant Honavar. Towards Collaborative Environ-
ments for Ontology Construction and Sharing. In International Symposium on
Collaborative Technologies and Systems (CTS "06), pages 99-108. IEEE Com-
puter Society, 2006. May 14-17, Las Vegas, NV, USA.

160

[9]

[12]

[13]

[14]

[15]

Jie Bao and Vasant Honavar. Adapt OWL as a Modular Ontology Language.
In Bernardo Cuenca Grau, Pascal Hitzler, Conor Shankey, and Evan Wal-
lace, editors, The OWLED Workshop on OWL: Experiences and Directions
(OWLED ’06), volume 216 of CEUR Workshop Proceedings. CEUR-WS.org,
2006. November 10-11, Athens, Georgia, USA.

Vladimir Batagelj. Analysis of large networks - islands. Dagstuhl seminar 03361:
Algorithmic Aspects of Large and Complex Networks, 2003. Dagstuhl, August
31 - September 5.

John A. Bateman, Kerstin Fischer, Reinhard Moratz, Scott Farrar, and Thora
Tenbrink. Project 11-OntoSpace: Ontologies for Spatial Communication. In
DiaBruck, 7th Workshop on the Semantics and Pragmatics of Dialogue, Pro-
ceedings, pages 163-164, 2003. 4th-6th September,Wallerfangen, Germany.

Johannes Bauer, Ulrike Sattler, and Bijan Parsia. Explaining by example:
Model exploration for ontology comprehension. In The 22nd International
Workshop on Description Logics (DL’09), volume 477 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2009. Oxford, UK, July 27-30, 2009.

Elena Beisswanger, Stefan Schulz, Holger Stenzhorn, and Udo Hahn. BioTop:
An upper domain ontology for the life sciences — a description of its cur-
rent structure, contents and interfaces to OBO ontologies. Applied Ontology,
3(4):205-212, 2008.

Elena Beisswanger, Stefan Schulz, Holger Stenzhorn, and Udo Hahn. Biotop:
An upper domain ontology for the life sciencesa description of its current struc-
ture, contents and interfaces to OBO ontologies. Applied Ontology, 3(4):205—
212, 2008.

Kele T. Belloze, Daniel Igor S. B. Monteiro, Tulio F. Lima, Floriano P. Silva
Jr., and Maria Claudia Reis Cavalcanti. An evaluation of annotation tools for
biomedical texts. In Proceedings of Joint V Seminar on Ontology Research in
Brazil and VII International Workshop on Metamodels, Ontologies and Seman-
tic Technologies, volume 938 of CEUR Workshop Proceedings. CEUR-WS.org,
2012. Recife, Brazil, September 19-21.

Johann Bergh, Aurona Gerber, Tommie Meyer, and Lynette van Zijl. Path
analysis for ontology comprehension. In The Seventh Australasian Ontology

Workshop (AOW’11), CRPIT. ACS, 2011. 5 December, Perth Australia.

Norman Biggs, E Keith Lloyd, and Robin J Wilson. Graph Theory, 1736-1936.
Clarendon Press Oxford, 1976.

Eva Blomgqvist. Set ontology design pattern. http://
ontologydesignpatterns.org/wiki/Submissions:Set last ac-
cessed: 20 June 2017, 2010. Online (December 2010).

161

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Alex Borgida and Luciano Serafini. Distributed Description Logics: Directed
Domain Correspondences in Federated Information Sources. In Robert Meers-
man and Zahir Tari, editors, On the Move to Meaningful Internet Systems 2002:
CooplS, DOA, and ODBASE, volume 2519 of Lecture Notes in Computer Sci-

ence, pages 36-53. Springer Berlin Heidelberg, 2002.

Stefano Borgo. Goals of modularity: A voice from the foundational viewpoint.
In Oliver Kutz and Thomas Schneider, editors, The Fifth International Work-
shop on Modular Ontologies (WOMO’2011), volume 230 of Frontiers in Ar-
tificial Intelligence and Applications, pages 1-6. IOS Press, 2011. Ljubljana,
Slovenia, August.

Paolo Bouquet, Fausto Giunchiglia, Frank Harmelen, Luciano Serafini, and
Heiner Stuckenschmidt. C-OWL: Contextualizing Ontologies. In Dieter Fensel,
Katia Sycara, and John Mylopoulos, editors, The Second International Seman-
tic Web Conference (ISWC ’03), volume 2870 of Lecture Notes in Computer
Science, pages 164-179. Springer, 2003. October 20-23, Sanibel Island, FL,
USA.

L. J. Campbell, Terry A. Halpin, and Henderik Alex Proper. Conceptual
schemas with abstractions: Making flat conceptual schemas more comprehen-
sible. Data Knowledge Engineering, 20(1):39-85, 1996.

Werner Ceusters, Barry Smith, and Christoffel DHAEN" Anand KUMAR. Mis-
takes in medical ontologies: Where do they come from and how can they be.
In Ontologies in Medicine. Proceedings of the Workshop on Medical Ontologies,
volume 102, pages 145-164. IOS Press, 2003. Ronem October 2003.

C. Chavula and C. M. Keet. An orchestration framework for linguistic task on-
tologies. In Proceedings of the 9th Metadata and Semantics Research Conference
(MTSR’15), CCIS, page in print. Springer, 2015. 9-11 Sept., 2015, Manchester,
UK.

Catherine Chavula and C. Maria Keet. An orchestration framework for lin-
guistic task ontologies. In Emmanouel Garoufallou, Richard J. Hartley, and
Panorea Gaitanou, editors, 9th Metadata and Semantics Research Conference
(MTSR’15), volume 544 of CCIS, pages 3-14. Springer, 2015. 9-11 September,
2015, Manchester, UK.

Jiyang Chen, Osmar R. Zaiane, and Randy Goebel. Detecting communities in
social networks using max-min modularity. In Proceedings of the SIAM Inter-
national Conference on Data Mining (SDM’09), pages 978-989. SIAM, 20009.
April 30 - May 2, Sparks, Nevada, USA.

Paolo Ciccarese and Silvio Peroni. The collections ontology: Creating and
handling collections in OWL 2 DL frameworks. Semantic Web, 5(6):515-529,
2014.

162

[28]

[29]

[30]

[31]

[32]

[33]

[35]

Lindsay Grey Cowell and Barry Smith. Infectious Disease Ontology, pages 373
395. Springer New York, 2010.

Bernardo Cuenca Grau, lan Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A
logical framework for modularity of ontologies. In Manuela M. Veloso, editor,
Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 298-303, 2007. Hyderabad, India, January 6-12, 2007.

Bernardo Cuenca Grau, lan Horrocks, Yevgeny Kazakov, and Ulrike Sattler.
Modular Reuse of Ontologies: Theory and Practice. Journal of Artificial Intel-
ligence Research (JAIR), 31:273-318, 2008.

Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Mod-
ularity and Web Ontologies. In 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR’06), pages 198-209. AAAI Press,
2006. June 2-5, Lake District, United Kingdom.

Wasila M. Dahdul, Hong Cui, Paula M. Mabee, Christopher J. Mungall, David
Osumi-Sutherland, Ramona Walls, and Melissa Haendel. Nose to tail, roots
to shoots: spatial descriptors for phenotypic diversity in the biological spatial
ontology. J. Biomedical Semantics, 5:34, 2014.

Mathieu d’Aquin, Marta Sabou, and Enrico Motta. Modularization: a Key for
the Dynamic Selection of Relevant Knowledge Components. In 1st International
Workshop on Modular Ontologies (WoMO’06), volume 232 of CEUR Workshop
Proceedings. CEUR-WS.org, 2006. Nov 5, Athens, Georgia, USA.

Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou.
Ontology modularization for knowledge selection: Experiments and evalua-
tions. In Roland Wagner, Norman Revell, and Giinther Pernul, editors, The
18th International Conference on Database and Expert Systems Applications
(DEXA’07), volume 4653 of Lecture Notes in Computer Science, pages 874—
883. Springer, 2007. Regensburg, Germany, September 3-7, 2007.

Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou.
Criteria and evaluation for ontology modularization techniques. In Modular
Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of Lecture Notes in Computer Science, pages 67-89. Springer, 2009.

Anusuriya Devaraju, Werner Kuhn, and Chris S. Renschler. A formal model
to infer geographic events from sensor observations. International Journal of
Geographical Information Science, 29(1):1-27, 2015.

Paul Doran, Valentina A. M. Tamma, and Luigi lannone. Ontology module
extraction for ontology reuse: an ontology engineering perspective. In Mario J.
Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuinness,
Bjorn Olstad, Oystein Haug Olsen, and André O. Falcao, editors, Proceedings

163

[38]

[39]

[40]

[42]

[43]

[44]

[45]

[40]

[47]

of the Sizteenth ACM Conference on Information and Knowledge Management
(CIKM °07), pages 61-70. ACM, 2007. Lisbon, Portugal, November 6-10.

Zlatan Dragisic, Valentina Ivanova, Patrick Lambrix, Daniel Faria, Ernesto
Jiménez-Ruiz, and Catia Pesquita. User validation in ontology alignment. In
15th International Semantic Web Conference (ISWC’16), volume 9981 of Lec-
ture Notes in Computer Science, pages 200-217, 2016. Kobe, Japan, October
17-21, 2016.

Faezeh Ensan and Weichang Du. A semantic metrics suite for evaluating mod-
ular ontologies. Information Systems, 38(5):745-770, 2013.

Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris. The ICOM 3.0 intelli-
gent conceptual modelling tool and methodology. Semantic Web, 3(3):293-306,
2012.

Pablo R. Fillottrani and C. Maria Keet. Patterns for heterogeneous thox map-
pings to bridge different modelling decisions. In E. Blomqvist et al., editors,
Proc. of ESWC’17, volume 10249 of LNCS, pages 371-386. Springer, 2017. 30
May - 1 June 2017, Portoroz, Slovenia.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75—
174, 2010.

Linton C. Freeman. Centrality in social networks conceptual clarification. Social
Networks, 1(3):215-239, 1978.

A. Gangemi and V. Presutti. Ontology design patterns. In S. Staab and
R. Studer, editors, Handbook on Ontologies, pages 221-243. Springer Verlag,
2009.

Aldo Gangemi. Acting for ontology design pattern. http://
ontologydesignpatterns.org/wiki/Submissions:ActingFor last
accessed: 20 June 2017, 2010. Online (August 2010).

Aldo Gangemi. Situation ontology design pattern. http://

ontologydesignpatterns.org/wiki/Submissions:Situation

last accessed: 20 June 2017, 2010. Online (March 2010).

Ana Carolina Garcia, Leticia Tiveron, Claudia Justel, and Maria Claudia Cav-
alcanti. Applying graph partitioning techniques to modularize large ontolo-
gies. In Joint V Seminar on Ontology Research in Brazil and VII International
Workshop on Metamodels, Ontologies and Semantic Technologies, volume 938
of CEUR Workshop Proceedings, pages 72-83. CEUR-WS.org, 2012. Recife,
Brazil, September 19-21.

Juan Garcia, Francisco José Garcia Penalvo, and Roberto Therén. A survey on
ontology metrics. In Miltiadis D. Lytras, Patricia Ordonez de Pablos, Adrian

164

[50]

[51]

[52]

[55]

[56]

Ziderman, Alan Roulstone, Hermann A. Maurer, and Jonathan B. Imber, edi-
tors, Third World Summit on the Knowledge Society, (WSKS’10), volume 111 of
Communications in Computer and Information Science, pages 22—27. Springer,
2010. Corfu, Greece, September 22-24.

Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks. Framework for an auto-
mated comparison of description logic reasoners. In The 5th International Se-
mantic Web Conference (ISWC’06), volume 4273 of Lecture Notes in Computer
Science, pages 654—667. Springer, 2006. Athens, GA, USA, November 5-9, 2006.

Chiara Ghidini and Fausto Giunchiglia. A semantics for abstraction. In Ra-
mon Lopez de Mantaras and Lorenza Saitta, editors, Proceedings of the 16th
Eureopean Conference on Artificial Intelligence (ECAI’04), pages 343-347. 10S
Press, 2004. PAIS 2004, Valencia, Spain, August 22-27.

Chiara Ghidini and Fausto Giunchiglia. A semantics for abstraction. In Pro-
ceedings of the 16th European conference on Artificial Intelligence (ECAI-04),
2004. Valencia, 22-27 August 2004.

Andrew Gibson, Katy Wolstencroft, and Robert Stevens. Promotion of onto-
logical comprehension: Exposing terms and metadata with web 2.0. In The
Workshop on Social and Collaborative Construction of Structured Knowledge
(CKC’07), volume 273 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.
Banff, Canada, May 8.

Fausto Giunchiglia, Adolfo Villafiorita, and Toby Walsh. Theories of abstrac-
tion. Al Communication, 10(3,4):167-176, 1997.

Jennifer Golbeck, Gilberto Fragoso, Frank W. Hartel, James A. Hendler, Jim
Oberthaler, and Bijan Parsia. The national cancer institute’s thésaurus and
ontology. Journal of Semantic Web, 1(1):75-80, 2003.

Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220, June 1993.

N. Guarino. Formal ontology and information systems. In N. Guarino, editor,
Proceedings of the 1st International Conference on Formal Ontology in Infor-
mation Systems (FOI1S’98), Frontiers in Artificial intelligence and Applications,
pages 3—-15, Amsterdam, The Netherlands, 1998. IOS Press.

Melissa A Haendel, Fabian Neuhaus, David Osumi-Sutherland, Paula M Mabee,
Jos LV Mejino Jr, Chris J Mungall, and Barry Smith. CARO- The common
anatomy reference ontology. In Anatomy Ontologies for Bioinformatics, vol-
ume 6 of Computational Biology, pages 327-349. Springer, 2008.

Faycal Hamdi, DBrigitte Safar, Chantal Reynaud, and Haifa Zargayouna.
Alignment-based partitioning of large-scale ontologies. In Advances in Knowl-
edge Discovery and Management [Best of EGC 2009, Strasbourg, France], vol-

165

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[68]

[69]

ume 292 of Studies in Computational Intelligence, pages 251-269. Springer,
2009.

Jens Hartmann, York Sure, Peter Haase, Raul Palma, and Mari del Carmen
Suarez-Figueroa. OMV - Ontology Metadata Vocabulary. In Ontology Patterns
for the Semantic Web (OPSW), 2005. Galway, Ireland, November.

Janna Hastings, Paula de Matos, Adriano Dekker, Marcus Ennis, Venkatesh
Muthukrishnan, Steve Turner, Gareth Owen, and Christoph Steinbeck. Modu-
lar extensions to the ChEBI ontology. In Proceedings of the 3rd International
Conference on Biomedical Ontology (ICBO 2012), volume 897 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2012. Graz, Austria, July 21-25.

Heinrich Herre. General Formal Ontology (GFO): A foundational ontology
for conceptual modelling. In Theory and applications of ontology: computer
applications, pages 297-345. Springer, 2010.

Heinrich Herre. General Formal Ontology (GFO): A foundational ontology
for conceptual modelling. In Theory and Applications of Ontology: Computer
Applications, chapter 14, pages 297-345. Springer, Heidelberg, 2010.

Ralph Hodgson and Paul J Keller. QUDT-quantities, units, dimensions and
data types in OWL and XML. http://www.qudt.org last accessed: 20
June 2017, 2011. Online (September 2011).

Robert Hoehndorf, Michel Dumontier, John H Gennari, Sarala Wimalaratne,
Bernard de Bono, Daniel L. Cook, and Georgios V Gkoutos. Integrating systems
biology models and biomedical ontologies. BMC' systems biology, 5(1):124, 2011.

Robert Hoehndorf, Frank Loebe, Roberto Poli, Heinrich Herre, and Janet Kelso.
GFO-Bio: A biological core ontology. Applied Ontology, 3(4):219-227, 2008.

Robert Hoehndorf, Frank Loebe, Roberto Poli, Heinrich Herre, and Janet Kelso.
GFO-Bio: A biological core ontology. Applied Ontology, 3(4):219-227, 2008.

Rinke Hoekstra, Joost Breuker, Marcello Di Bello, and Alexander Boer. The
LKIF core ontology of basic legal concepts. In Proceedings of the 2nd Workshop
on Legal Ontologies and Artificial Intelligence Techniques (LOAIT ’07), volume
321 of CEUR Workshop Proceedings, pages 43—63. CEUR-WS.org, 2007. June
4th, Stanford University, Stanford, CA, USA.

Joana Hois, Mehul Bhatt, and Oliver Kutz. Modular ontologies for architectural
design. In Proceedings of the International workshop on Formal Ontologies Meet
Industry (FOMI’09), 2009. September 2, 2009, Vicenza, Italy.

Matthew Horridge and Sean Bechhofer. The OWL API: A java API for OWL
ontologies. Semantic Web, 2(1):11-21, 2011.

166

[70]

[72]

[73]

[74]

[75]

[78]

Jon C. Ison, Matus Kalas, Inge Jonassen, Dan M. Bolser, Mahmut Uludag,
Hamish McWilliam, James Malone, Rodrigo Lopez, Steve Pettifer, and Pe-
ter M. Rice. EDAM: an ontology of bioinformatics operations, types of data
and identifiers, topics and formats. Bioinformatics, 29(10):1325-1332, 2013.

Krzysztof Janowicz and Michael Compton. The Stimulus-Sensor-Observation
Ontology Design Pattern and its Integration into the Semantic Sensor Network
Ontology. In 3rd International Workshop on Semantic Sensor Networks, vol-
ume 668 of CEUR Workshop Proceedings. CEUR-WS.org, 2010. November 7,
Shanghai, China.

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Yujiao Zhou. Logmap 2.0:
towards logic-based, scalable and interactive ontology matching. In The 4th
International Workshop on Semantic Web Applications and Tools for the Life
Sciences, SWAT4LS 2011, pages 45-46. ACM, 2011. London, United Kingdom,
December 07-09, 2011.

Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and
James A. Hendler. Swoop: A Web Ontology Editing Browser. Journal of
Web Semantics, 4(2):144-153, 2006.

Yevgeny Kazakov, Markus Krotzsch, and Frantisek Simancik. ELK reasoner:
Architecture and evaluation. In Ian Horrocks, Mikalai Yatskevich, and Ernesto
Jiménez-Ruiz, editors, 1st International Workshop on OWL Reasoner Evalua-
tion (ORE-2012), volume 858 of CEUR Workshop Proceedings. CEUR-WS.org,
2012. Manchester, UK, July 1st.

C. M. Keet, A. Lawrynowicz, C. d’Amato, A. Kalousis, P. Nguyen, R. Palma,
R. Stevens, and M. Hilario. The data mining optimization ontology. Web
Semantics: Science, Services and Agents on the World Wide Web, 32:43-53,
2015.

C. Maria Keet. Using abstractions to facilitate management of large ORM
models and ontologies. In OTM Workshops, volume 3762 of Lecture Notes in
Computer Science, pages 603-612, 2005. Agia Napa, Cyprus, October 31 -
November 4.

C. Maria Keet. Enhancing comprehension of ontologies and conceptual models
through abstractions. In 10th Congress of the Italian Association for Artificial
Intelligence (AI*IA 2007), volume 4733 of Lecture Notes in Computer Science,
pages 813-821. Springer, 2007. Rome, Italy, September 10-13.

C. Maria Keet, Claudia d’Amato, Zubeida Casmod Khan, and Agnieszka
Lawrynowicz. Exploring reasoning with the DMOP ontology. In 3rd Workshop
on Ontology Reasoner Evaluation (ORE’1j), CEUR Workshop Proceedings,
pages 64-70. CEUR-WS.org, 2014. July 1, Vienna, Austria.

167

[79]

[80]

[81]

[82]

[85]

[36]

C. Maria Keet, A. Lawrynowicz, C. d’Amato, and M. Hilario. Modeling issues
and choices in the Data Mining OPtimisation Ontology. In 8th Workshop on
OWL: Ezperiences and Directions (OWLED’13), volume 1080 of CEUR-WS,
2013. 26-27 May 2013, Montpellier, France.

Zubeida Khan and C. Maria Keet. The foundational ontology library RO-
MULUS. In Third International Conference on Model & Data Engineering
(MEDI’13), volume 8216 of LNCS, pages 200-211. Springer, 2013. September
25-27, 2013, Amantea, Italy.

Zubeida Khan and C. Maria Keet. Feasibility of automated foundational ontol-
ogy interchangeability. In 19th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW’14), volume 8876 of LNAI pages
225-237. Springer, 2014. 24 - 28 November 2014, Linkoping, Sweden.

Zubeida Casmod Khan. Evaluation metrics in ontology modules. In 29th In-
ternational Workshop on Description Logics (DL’16), volume 1577 of CEUR
Workshop Proceedings. CEUR-WS.org, 2016. 22-25 April 2016, Cape Town,
South Africa.

Zubeida Casmod Khan and C. Maria Keet. Automatic modularisation with
algorithms for abstraction and expressiveness. (in preparation for submission
to an international conference).

Zubeida Casmod Khan and C. Maria Keet. SUGOI: automated ontology in-
terchangeability. In Patrick Lambrix, Eero Hyvonen, Eva Blomqvist, Valentina
Presutti, Guilin Qi, Uli Sattler, Ying Ding, and Chiara Ghidini, editors, Knowl-
edge Engineering and Knowledge Management - EKAW 2014 Satellite Fvents,
volume 8982 of Lecture Notes in Computer Science, pages 150-153. Springer,
2014. Linkoping, Sweden, November 24-28, 2014. Revised Selected Papers.

Zubeida Casmod Khan and C. Maria Keet. An empirically-based framework
for ontology modularisation. Applied Ontology, 10(3-4):171-195, 2015.

Zubeida Casmod Khan and C. Maria Keet. Toward a framework for ontol-
ogy modularity. In Proceedings of the Annual Conference of the South African
Institute of Computer Scientists and Information Technologists (SAICSIT’15).
ACM Conference Proceedings, 2015. 28-30 September 2015, Stellenbosch, South
Africa.

Zubeida Casmod Khan and C. Maria Keet. Dependencies between modularity
metrics towards improved modules. In 20th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW’16), Lecture Notes in
Artificial Intelligence LNAI, pages 19-23. Springer, 2016. 19-23 November 2016,
Bologna, Italy.

168

3]

[39]

[90]

[91]

[92]

[93]

Zubeida Casmod Khan and C. Maria Keet. ROMULUS: the repository of
ontologies for multiple uses populated with mediated foundational ontologies.
Journal of Data Semantics, 5(1):19-36, 2016.

Zubeida Casmod Khan and C. Maria Keet. Automated ontology interchange-
ability towards improved modules. In Proceedings of the Annual Conference
of the South African Institute of Computer Scientists and Information Tech-
nologists (SAICSIT’17). ACM Conference Proceedings, 2017. 26-28 September
2017, Bloemfontein, Free State, South Africa.

Zubeida Casmod Khan, C. Maria Keet, Pablo R. Fillottrani, and Karina Cenci.
Experimentally motivated transformations for intermodel links between con-
ceptual models. In 20th Conference on Advances in Databases and Information
Systems (ADBIS’16), volume 9809 of Lecture Notes in Computer Science LNCS,
pages 104-118. Springer, 2016. August 28-31, Prague, Czech Republic.

Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Semantic mod-
ularity and module extraction in description logics. In Malik Ghallab, Con-
stantine D. Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris, editors,
Proceedings of 18th European Conference on Artificial Intelligence (ECAI08),
volume 178 of Frontiers in Artificial Intelligence and Applications, pages 55—59.
IOS Press, 2008. Patras, Greece, July 21-25, 2008.

Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Formal Properties
of Modularisation. In Modular Ontologies: Concepts, Theories and Techniques
for Knowledge Modularization, volume 5445 of Lecture Notes in Computer Sci-
ence, pages 25—66. Springer, 2009.

Markus Krotzsch. OWL 2 profiles: An introduction to lightweight ontology
languages. In Reasoning Web. Semantic Technologies for Advanced Query An-
swering - 8th International Summer School 2012, volume 7487 of Lecture Notes
in Computer Science, pages 112-183. Springer, 2012. Vienna, Austria, Septem-
ber 3-8, 2012.

O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-Connections of Abstract
Description Systems. Artificial Intelligence, 156(1):1-73, 2004.

Stephen D. Larson, Lisa Fong, Amarnath Gupta, Christopher Condit,
William J. Bug, and Maryann E. Martone. A formal ontology of subcellular
neuroanatomy. Front. Neuroinform., 2007, 2007.

Stephen D Larson, Lisa L Fong, Amarnath Gupta, Christopher Condit,
William J Bug, and Maryann E Martone. A Formal Ontology of Subcellular
Neuroanatomy. Front Neuroinformatics, 1:3, 2007.

Dennis Lee, Ronald Cornet, Francis Lau, and Nicolette de Keizer. A survey of
SNOMED CT implementations. Journal of Biomedical Informatics, 46(1):87 —
96, 2013.

169

[98]

[100]

[101]

[102]

103]

[104]

[105]

[106]

107]

Frank Loebe. Requirements for logical modules. In Peter Haase, Vasant
Honavar, Oliver Kutz, York Sure, and Andrei Tamilin, editors, The 1st Inter-
national Workshop on Modular Ontologies (WoMQO’06), volume 232 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006. ISWC’06 November 5, Athens,
Georgia, USA.

Steffen Lohmann, Paloma Diaz, and Ignacio Aedo. MUTO: the modular uni-
fied tagging ontology. In Chiara Ghidini, Axel-Cyrille Ngonga Ngomo, Ste-
fanie N. Lindstaedt, and Tassilo Pellegrini, editors, Proceedings of the 7th In-
ternational Conference on Semantic Systems (I-SEMANTICS ’11), ACM In-
ternational Conference Proceeding Series, pages 95-104. ACM, 2011. Graz,
Austria, September 7-9.

Bill MacCartney, Sheila A. Mcllraith, Eyal Amir, and Tomé&s E. Uribe. Practical
Partition-Based Theorem Proving for Large Knowledge Bases. In Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03), pages 89—
98. Morgan Kaufmann, 2003. Aug 9-15, Acapulco, Mexico.

I. Mani. A theory of granularity and its application to problems of polysemy and
underspecification of meaning. In A.G. Cohn, L.K. Schubert, and S.C. Shapiro,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of
the Sixth International Conference (KR98), pages 245-255. San Mateo: Morgan
Kaufmann, 1998.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Ontology
library. WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003)., 2003. http:
//www.loa.istc.cnr.it/old/Papers/D18.pdf last accessed: 20 June
2017.

Dave McComb. Gist: The minimalist upper ontology. 2010 Semantic Technol-
ogy Conference, 2010. June 21-25 2010, San Francisco, CA.

Peter Mika. Flink: Semantic web technology for the extraction and analysis of
social networks. Journal of Web Semantics, 3(2-3):211-223, 2005.

Eleni Mikroyannidi, Alan Rector, and Robert Stevens. Abstracting and gener-
alising the foundational model anatomy (fma) ontology. In Proceedings of the
bio-ontologies 2009 conference, 2009. Stockholm, June 2009.

R. Mizoguchi. YAMATO: Yet Another More Advanced Top-level Ontology.
In Proceedings of the Sixth Australasian Ontology Workshop, Conferences in
Research and Practice in Information, pages 1-16, 2010. Sydney : ACS.

Till Mossakowski, Oliver Kutz, and Mihai Codescu. Ontohub: A semantic
repository for heterogeneous ontologies. In Proceedings of the Theory Day
in Computer Science Satellite workshop (DACS-2014), 2014. University of
Bucharest, September 15-16, 2014.

170

[108]

109]

[110]

[111]

[112]

113

[114]

[115]

[116]

[117]

Till Mossakowski, Oliver Kutz, Mihai Codescu, and Christoph Lange. The dis-
tributed ontology, modeling and specification language. In Chiara Del Vescovo,
Torsten Hahmann, David Pearce, and Dirk Walther, editors, Proceedings of
the 7th International Workshop on Modular Ontologies (WoMO’13), volume
1081 of CEUR Workshop Proceedings. CEUR-WS.org, 2013. Corunna, Spain,
September 15.

Boris Motik, Bernardo Cuenca Grau, lan Horrocks, Zhe Wu, Achille Fokoue,
Carsten Lutz, et al. OWL 2 web ontology language profiles. W3C recommen-
dation, 27:61, 2009.

Mark A. Musen. The protégé project: a look back and a look forward. Al
Matters, 1(4):4-12, 2015.

David Newman, Sean Bechhofer, and David De Roure. myExperiment: An on-
tology for e-Research. In Proceedings of the Workshop on Semantic Web Appli-
cations in Scientific Discourse (SWASD 2009), volume 523 of CEUR Workshop
Proceedings. CEUR-WS.org, 2009. Washington DC, USA, October 26.

I. Niles and A. Pease. Towards a standard upper ontology. In Chris Welty
and Barry Smith, editors, Proceedings of the 2nd International Conference on
Formal Ontology in Information Systems (FOIS-2001), 2001. Ogunquit, Maine,
October 17-19, 2001.

Natalya Fridman Noy and Mark A. Musen. Specifying Ontology Views by
Traversal. In Third International Semantic Web Conference (ISWC’04), volume
3298 of Lecture Notes in Computer Science, pages 713-725. Springer, 2004. Nov
7-11, Hiroshima, Japan.

Natalya Fridman Noy and Mark A. Musen. Traversing ontologies to extract
views. In Modular Ontologies: Concepts, Theories and Techniques for Knowl-
edge Modularization, volume 5445 of Lecture Notes in Computer Science, pages
245-260. Springer, 2009.

Sunju Oh and Joongho Ahn. Ontology module metrics. In International Con-
ference on e-Business Engineering, (ICEBE’09), pages 11-18. IEEE Computer
Society, 2009. Macau, China, 21-23 October.

Sunju Oh, Heon Y Yeom, and Joongho Ahn. Evaluating ontology modulariza-
tion approaches. In The 8th International Conference on Frontiers of Infor-
mation Technology, page 6. ACM, 2010. December 21 -23, 2010, Islamabad,
Pakistan.

Sunju Oh and Heon Young Yeom. Evaluation criteria ontology modularization
tools. In The IEEE/WIC/ACM International Joint Conference on Web In-
telligence and Intelligent Agent Technology - Workshops (WI-IAT ’11), pages
365-368. IEEE Computer Society, 2011. Lyon, France, August 22-27, 2011.

171

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

128]

Sunju Oh, Heon Young Yeom, and Joongho Ahn. Cohesion and coupling metrics
for ontology modules. Information Technology and Management, 12(2):81-96,
2011.

Anthony M. Orme, Haining Yao, and Letha H. Etzkorn. Coupling metrics for
ontology-based systems. IEEE Software, 23(2):102-108, 2006.

P. Pandurang Nayak and A.Y. Levy. A semantic theory of abstractions. In
C. Mellish, editor, Proceedings of the International Joint Conference on Artifi-
cial Intelligence, pages 196-203. San Mateo: Morgan Kaufmann, 1995.

Pance Panov, Saso Dzeroski, and Larisa N. Soldatova. OntoDM: An ontology
of data mining. In Workshops Proceedings of the 8th IEEE International Con-
ference on Data Mining (ICDM 2008), pages 752-760. IEEE Computer Society,
2008. December 15-19, Pisa, Italy.

Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos
Spyridonos. Community detection in social media - performance and application
considerations. Data Mining and Knowledge Discovery, 24(3):515-554, 2012.

Christine Parent and Stefano Spaccapietra. An Overview of Modularity. In
Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors,
Modular Ontologies, volume 5445 of Lecture Notes in Computer Science, pages
5-23. Springer Berlin Heidelberg, 2009.

Jyotishman Pathak, Thomas M. Johnson, and Christopher G. Chute. Survey of
modular ontology techniques and their applications in the biomedical domain.
Integrated Computer-Aided Engineering, 16(3):225-242, 2009.

Heiko Paulheim. On applying matching tools to large-scale ontologies. In Pavel
Shvaiko, Jérome Euzenat, Fausto Giunchiglia, and Heiner Stuckenschmidt, ed-
itors, Proceedings of the 3rd International Workshop on Ontology Matching
(OM’08), volume 431 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.
Karlsruhe, Germany, October 26.

Clara Pizzuti. Community detection in social networks with genetic algorithms.
In Conor Ryan and Maarten Keijzer, editors, Proceedings of the Genetic and
FEvolutionary Computation Conference (GECCO 2008), pages 1137-1138. ACM,
2008. Atlanta, GA, USA, July 12-16.

Valentina Presutti. Type of entities ontology design pattern.
http://ontologydesignpatterns.org/wiki/Submissions:
Types_of_entities last accessed: 20 June 2017, 2010. Online (March
2010).

Alan L. Rector, Jeremy Rogers, Pieter E. Zanstra, and Egbert J. van der Har-
ing. OpenGALEN: Open source medical terminology and tools. In American
Medical Informatics Association Annual Symposium (AMIA’03). AMIA, 2003.
Washington, DC, USA, November 8-12.

172

[129]

[130]

[131]

[132]

[133]

[134]

135

[136]

[137]

[138]

139]

Rachel L. Richesson, James E. Andrews, and Jeffrey P. Krischer. Use of
SNOMED CT to Represent Clinical Research Data: A Semantic Character-
ization of Data Items on Case Report Forms in Vasculitis Research. JAMIA,
13(5):536-546, 2006.

Lior Rokach and Oded Maimon. Clustering Methods, pages 321-352. Springer
US, 2005.

Ana Armas Romero, Mark Kaminski, Bernardo Cuenca Grau, and Ian Hor-

rocks. Module extraction in expressive ontology languages via datalog reason-
ing. Journal of Artificial Intelligence Research (JAIR), 55:499-564, 2016.

Marco Rospocher. An ontology for personalized environmental decision support.
In Formal Ontology in Information Systems FOIS 14, pages 421-426, 2014.
September, 22-25, 2014, Rio de Janeiro, Brazil.

Cornelius Rosse and José L. V. Mejino, Jr. A reference ontology for biomed-
ical informatics: the Foundational Model of Anatomy. Journal of Biomedical
Informatics, 36(6):478-500, 2003.

Satya Sanket Sahoo, Samden D. Lhatoo, Deepak K. Gupta, Licong Cui, Meng
Zhao, Catherine P. Jayapandian, Alireza Bozorgi, and Guo-Qiang Zhang.
Epilepsy and seizure ontology: towards an epilepsy informatics infrastructure
for clinical research and patient care. Journal of American Medical Informatics

Association, 21(1):82-89, 2014.

Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev. Which kind of
module should I extract? In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik,
and Ulrike Sattler, editors, Proceedings of the 22nd International Workshop
on Description Logics (DL’09), volume 477 of CEUR Workshop Proceedings.
CEUR-~-WS.org, 2009. Oxford, UK, July 27-30, 2009.

Ansgar Scherp, Carsten Saathoff, Thomas Franz, and Steffen Staab. Designing
core ontologies. Applied Ontology, 6(3):177-221, 2011.

Anne Schlicht and Heiner Stuckenschmidt. Towards structural criteria for on-

tology modularization. In Proceedings of the 1st International Workshop on
Modular Ontologies, (WoMO’06), volume 232 of CEUR Workshop Proceedings.
CEUR-WS.org, 2006. ISWC’06 November 5, 2006, Athens, Georgia, USA.

Anne Schlicht and Heiner Stuckenschmidt. A flexible partitioning tool for large
ontologies. In International Conference on Web Intelligence (WI 2008), pages
482-488. IEEE, 2008. 9-12 December, Sydney, NSW, Australia.

Anne Schlicht and Heiner Stuckenschmidt. A flexible partitioning tool for large
ontologies. In International Conference on Web Intelligence (WI'08), pages
482-488. IEEE Computer Society, 2008. 9-12 December, Sydney, NSW, Aus-
tralia.

173

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Stefan Schulz and Martin Boeker. BioTopLite: An upper level ontology for
the life sciences. evolution, design and application. In Informatik 2013, 43.
Jahrestagung der Gesellschaft fir Informatik e.V. (GI), Informatik angepasst
an Mensch, Organisation und Umwelt, volume 220 of LNI, pages 1889-1899.
GI, 2013. 16-20. September 2013, Koblenz.

Julian Seidenberg. Web ontology segmentation: Extraction, transformation,
evaluation. In Modular Ontologies: Concepts, Theories and Techniques for
Knowledge Modularization, volume 5445 of Lecture Notes in Computer Science,
pages 211-243. Springer, 2009.

Stefanie Seltmann, Harald Stachelscheid, Alexander Damaschun, Ludger
Jansen, Fritz Lekschas, Jean-Fred Fontaine, Throng-Nghia Nguyen-Dobinsky;,
Ulf Leser, and Andreas Kurtz. CELDA - an ontology for the comprehensive
representation of cells in complex systems. BMC Bioinformatics, 14:228, 2013.

B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L.J. Gold-
berg, K. Eilbeck, A. Ireland, C.J. Mungall, The OBI Consortium, N. Leontis,
A.B. Rocca-Serra, A. Ruttenberg, S-A. Sansone, M. Shah, P.L. Whetzel, and
S. Lewis. The OBO Foundry: Coordinated evolution of ontologies to support
biomedical data integration. Nature Biotechnology, 25(11):1251-1255, 2007.

Holger Stenzhorn, Elena Beisswanger, and Stefan Schulz. Towards a top-domain
ontology for linking biomedical ontologies. In Proceedings of the 12th World
Congress on Health Medical Informatics - Building Sustainable Health Systems
(MEDINFO’07), volume 129 of Studies in Health Technology and Informatics,
pages 1225-1229. IOS Press, 2007. 20-24 August, Brisbane, Australia.

Robert Stevens and Phillip Lord. Semantic publishing of knowledge about
amino acids. In Alexander Garca Castro, Christoph Lange, Frank van Harme-
len, and Benjamin Good, editors, Proceedings of the 2nd Workshop on Semantic
Publishing, volume 903 of CEUR Workshop Proceedings, pages 45-48. CEUR-
WS.org, 2012. Hersonissos, Crete, Greece, May 28th.

Anselm Strauss and Juliet Corbin. Grounded theory methodology. Handbook
of qualitative research, 17:273-85, 1994.

Heiner Stuckenschmidt and Michel C. A. Klein. Structure-based partitioning
of large concept hierarchies. In Third International Semantic Web Conference
(ISWC"04), volume 3298 of Lecture Notes in Computer Science, pages 289-303.
Springer, 2004. Hiroshima, Japan, November 7-11, 2004.

Heiner Stuckenschmidt and Michel C. A. Klein. Reasoning and change man-
agement in modular ontologies. Data Knowledge Engineering, 63(2):200-223,
2007.

Heiner Stuckenschmidt and Anne Schlicht. Structure-Based Partitioning of
Large Ontologies. In Modular Ontologies: Concepts, Theories and Techniques

174

[150]

151]

[152)

[153]

[154]

[155]

[156]

[157]

for Knowledge Modularization, volume 5445 of Lecture Notes in Computer Sci-
ence, pages 187-210. Springer, 2009.

Mari Carmen Suarez-Figueroa, Asuncién Goémez-Pérez, and Mariano
Fernandez-Lépez. The neon methodology for ontology engineering. In Ontology
Engineering in a Networked World., pages 9-34. Springer, 2012.

Samir Tartir, I Budak Arpinar, Michael Moore, Amit P Sheth, and Boanerges
Aleman-Meza. OntoQA: Metric-based ontology quality analysis. I[EEE Work-
shop on Knowledge Acquisition from Distributed, Autonomous, Semantically
Heterogeneous Data and Knowledge Sources, 9, 2005.

Dhavalkumar Thakker, Vania Dimitrova, Lydia Lau, Ronald Denaux, Stan
Karanasios, and Fan Yang-Turner. A priori ontology modularisation in ill-
defined domains. In Chiara Ghidini, Axel-Cyrille Ngonga Ngomo, Stefanie N.
Lindstaedt, and Tassilo Pellegrini, editors, Proceedings the 7th International
Conference on Semantic System (I-SEMANTICS’11), ACM International Con-
ference Proceeding Series, pages 167-170. ACM, 2011. Graz, Austria, Septem-
ber 7-9, 2011.

Hendrik Thomas, Rob Brennan, and Declan O’Sullivan. Using the OM2R meta-
data model for ontology mapping reuse for the ontology alignment challenge
- a case study. In Proceedings of the 7th International Workshop on Ontol-
ogy Matching (OM’12); volume 946 of CEUR-WS, 2012. Boston, MA, USA,
November 11.

Dmitry Tsarkov. Improved Algorithms for Module Extraction and Atomic De-
composition. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter, edi-
tors, The 2012 International Workshop on Description Logics (DL ’12), volume
846 of CEUR Workshop Proceedings. CEUR-WS.org, 2012. Rome, Italy, June
7-10.

Venkata Krishna Chaitanya Turlapati and Sreenivasa Kumar Puligundla. Ef-
ficient module extraction for large ontologies. In Pavel Klinov and Dmitry
Mouromtsev, editors, 4th International Conference on Knowledge Engineer-
ing and the Semantic Web (KESW’13), volume 394 of Communications in
Computer and Information Science, pages 162-176. Springer Berlin Heidelberg,
2013.

Chiara Del Vescovo. The modular structure of an ontology: Atomic decompo-
sition towards applications. In Proceedings of the 24th International Workshop
on Description Logics (DL 2011), volume 745 of CEUR Workshop Proceedings.
CEUR-WS.org, 2011. Barcelona, Spain, July 13-16.

Chiara Del Vescovo, Damian Gessler, Pavel Klinov, Bijan Parsia, Ulrike Sattler,
Thomas Schneider, and Andrew Winget. Decomposition and Modular Structure
of BioPortal Ontologies. In 10th International Conference on The International

175

158

[159]

[160]

[161]

[162]

[163]

[164]

Semantic Web Conference (ISWC’10), volume 7031 of Lecture Notes in Com-
puter Science, pages 130—-145. Springer, 2011. October 23-27, Bonn, Germany.

Chiara Del Vescovo, Pavel Klinov, Bijan Parsia, Ulrike Sattler, Thomas Schnei-
der, and Dmitry Tsarkov. Empirical study of logic-based modules: Cheap is
cheerful. In Proceedings of the 26th International Workshop on Description Log-
ics (DL 2013), volume 1014 of CEUR Workshop Proceedings, pages 144-155.
CEUR-WS.org, 2013. Ulm, Germany, July 23 - 26.

Chiara Del Vescovo, Bijan Parsia, Ulrike Sattler, and Thomas Schneider. The
modular structure of an ontology: Atomic decomposition. In Toby Walsh, edi-
tor, The 22nd International Joint Conference on Artificial Intelligence (IJCAI
'11), pages 2232-2237. IJCAI/AAAI 2011. Barcelona, Catalonia, Spain, July
16-22, 2011.

Markel Vigo, Caroline Jay, and Robert Stevens. Design insights for the next
wave ontology authoring tools. In Conference on Human Factors in Computing
Systems (CHI’1}), pages 1555-1558. ACM, 2014. Toronto, ON, Canada, April
26 - May 01, 2014.

Yimin Wang, Peter Haase, and Jie Bao. A survey of formalisms for modular
ontologies. In Workshop on Semantic Web for Collaborative Knowledge Acqui-
sition, 2007.

Leo Wanner, Marco Rospocher, Stefanos Vrochidis, Harald Bosch, Ulrich
Bgel, Gerard Casamayor, Thomas Ertl, loannis Kompatsiaris, Tarja Kosken-
talo, Simon Mille, Jrgen Mograber, Anastasia Moumtzidou, Maria Myllynen,
Emanuele Pianta, Horacio Saggion, Luciano Serafini, Virpi Tarvainen, Sara
Tonelli, and Bruno Kessler. Personalized environmental service configuration
and delivery orchestration: The PESCaDO demonstrator. In In Proceedings of
the 9th Extended Semantic Web Conference (ESWC 2012), 2012. Heraklion,
Crete, Greece, May 27-31 (demo).

Patricia L. Whetzel, Natalya Fridman Noy, Nigam H. Shah, Paul R. Alexander,
Csongor Nyulas, Tania Tudorache, and Mark A. Musen. BioPortal: enhanced
functionality via new web services from the national center for biomedical on-
tology to access and use ontologies in software applications. Nucleic Acids
Research, 39(Web-Server-Issue), 2011.

Haining Yao, Anthony M Orme, and Letha Etzkorn. Cohesion metrics for
ontology design and application. Journal of Computer science, 1(1):107, 2005.

176

